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We show how directly transmitted microparasites, broadly defined to include viruses,
bacteria, protozoans and fungi, may regulate natural populations of invertebrate
hosts. The study combines elements of conventional epidemiology (where the host
population is assumed constant) with elements of prey-predator studies (which
conventionally emphasize how prey and predator populations may be regulated by
their interaction).

To this end, we construct simple models embodying the essentials of the dynamical
interaction between invertebrate hosts and their directly transmitted microparasites.
In successive refinements, these models include the effects of recovery and disease-
induced mortality, castration or diminished reproduction of infected hosts, vertical
transmission, latent periods of infection, stress-related pathogenicity, the interplay
between disease and other density-dependent constraints on host population growth,
and free-living infective stages. In analysing the dynamical behaviour of these models,
we focus on: the possible regulation of the host population by the parasite; the basic
reproductive rate of the parasite, and the way in which it affects the dynamics and
the evolution of the host—parasite association; and the threshold host density and its
implications for endemic or epidemic maintenance of the infection. These are ex-
amined in the light of synoptic compilations of field and laboratory data on: birth
rates (and disease-induced reduction thereof), natural death rates and disease-induced
death rates of hosts; latent periods and efficiencies of vertical transmission of pathogens;
the rate of production and lifetime of free-living infective stages; and some character-
istics of long-term cycles and of epidemic outbreaks of disease in forest insects. In
particular, our models suggest that the baculovirus and microsporidian infections of
many temperate forest insects will tend to produce stable cycles in host abundance and
in prevalence of infection, with periods in the range 5-12 years. Enough is known
about the European larch budmoth and an associated granulosis virus for us to under-
take a detailed comparison between theory and data that strongly suggests that the
observed 9-10 year cycles are driven by the host-parasite interaction. We also discuss
the possible control of invertebrate pest species by pathogens, showing how our
models could guide laboratory or field studies, to help estimate whether a given
pathogen is capable of regulating the target pest population, and, if so, roughly
what quantity is needed to effect a specific level of (local) control.

Throughout, the emphasis is on the biological ingredients of the models, and on
the biological conclusions to be drawn; mathematical details are given in appendixes.

1. INTRODUCTION

492
493
496

496
498

501
504
504
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In this paper we aim at bringing together two separate literatures, one dealing with the ecology
of animal populations and the other with invertebrate pathology, that it might be understood
how parasitic infections persist within, and may regulate, populations of invertebrates.
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The ecological literature is rich in discussions of the ways in which natural populations may
be controlled by the interaction between predators or insect parasitoids and their hosts; such
discussions range from the seminal work of Elton and others to contemporary texts (Elton 1927;
Slobodkin 1961; Ricklefs 1973; Krebs 1978; Hutchinson 1978). The influence of pathogens
upon the dynamics of their host populations tends to have been either ignored (because the
pathogens are often difficult to detect), or dismissed as relatively unimportant (possibly because
the effects are not easily quantified). We show, however, that pathogens are diverse and abun-
dant in natural communities, and that the parameters characterizing their interactions with
their host populations are often such as to make pathogens as important as the more commonly
studied predators, parasitoids or resource limitations in constraining the growth of invertebrate
‘populations.

On the other hand, the attention of invertebrate pathologists and virologists has naturally
tended to centre on the biology of individual organisms, rather than on overall population
behaviour (Brock 1966; Smith 1976; Gibbs 1973; Fenner et al. 1974). In the field of inverte-
brate virology, for example, the basic identification and taxonomy of the pathogen is a major
problem (Smith & Wyckoff 1951 ; Tinsley 1979; Whitcomb & Tully 1979), and only recently have
technical advances enabled microbiologists to tackle these tasks successfully. We seek to build on
this factual foundation, creating a theoretical framework that elucidates the overall dynamical
properties of the host-pathogen system. Such an analytic framework clarifies the factors under-
lying the maintenance of endemic or epidemic disease in natural populations; as we shall argue
below, the absence of such understanding has caused some confusion in the literature on
invertebrate pathology (concerning, for example, the relation between epidemic phenomena
and host abundance). Moreover, an understanding of the population biology of infectious
diseases of invertebrates is relevant to the use of microparasites as agents in the biological control
of insect pest species (Burges & Hussey 1971; Huffaker 1974; DeBach 1974; Tinsley 1979).

The present paper focuses on microparasitic infections that are directly transmitted among
invertebrate hosts. The paper is organized as follows. A brief discussion of the term ‘micro-
parasites’, and of the diverse array of life cycles that they can exhibit is given in § 2. The
nature of invertebrate responses to parasitic infection is reviewed in § 3. Next, in § 4, we out-
line the basic components to be assembled into a set of equations for studying the population
dynamics of microparasitic infections; each individual component (disease transmission between
hosts, disease-induced host mortality, recovery from infection, etc.) of the overall model is based
on field and laboratory data, which is surveyed. The notions of the net reproductive rate of the
pathogen and of the threshold level of host abundance required for persistence of the disease
are also examined in § 4. The dynamical properties of the simplest model (model A) are
examined in § 5, with particular attention to the criteria determining whether a pathogen
regulates, or merely reduces, the population growth of its host. Data for some invertebrate hosts
and associated microparasites are reviewed in this light. In §§ 6-11 we then deal with a series
of modifications to this basic model A, incorporating various features that are known to arise
in particular host—parasite associations: model B allows for parasite-induced reduction of host
reproduction; model C incorporates the effects of vertical transmission; model D includes a
latent period, during which hosts are infected but not yet infectious; model E examines the
interaction of disease and stress within the host population; model F adds density-dependent
constraints on the population growth of the host; and model G extends the range of possible
dynamical behaviour by including free-living infective stages of the parasite. In all of these,

46-2
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the emphasis is on the biological lessons to be learned from these mathematical metaphors,
and on possible tests against empirical evidence.

In § 12, we combine theory and observation to show how pathogens can generate cyclic
patterns, with periods in excess of one year, in the abundance of their hosts and in the pre-
valence of infection. We suggest that the 5-12 year population cycles recorded for many
temperate forest insects (and particularly the 9-10 year cycle of the European larch budmoth)
arise in this way. In § 13 we deal more generally with the persistence of pathogens within host
populations that fluctuate widely with time; we show how vertical transmission, occult or non-
apparent infections or free-living infective stages can help solve the problems that such circum-
stances pose. In § 14 we consider the use of pathogens as agents of biological control of pest
species, concentrating on the features likely to lead to successful control. Some general aspects
of the coevolution of invertebrate hosts and their pathogens are discussed in § 15. F inally, § 16
summarizes the main conclusions. Lists of the symbols used to denote the variables and para-
meters in this paper are given in appendix A, and mathematical details and proofs of results
given in the main text are outlined in a series of other appendixes.

More generally, we are interested in the population biology of parasitic infections (defined
broadly to include viruses, bacteria, protozoans, fungi, helminths and arthropod infections),
and in the way that they may regulate the abundance of their host populations. This larger
plan embraces both directly and indirectly transmitted infections of both vertebrate and in-
vertebrate host species (for an overview, see Anderson & May (19794) and May & Anderson
(1979)). Thus the present study of invertebrate hosts and their directly transmitted micro-
parasites is a piece in a larger picture; it is, however, a most substantial piece, rich in data and
in potential practical applications.

2. MICROPARASITES OF PROKARYOTES AND INVERTEBRATE EUKARYOTES

We use the term microparasite to describe pathogens, such as viruses, bacteria, protozoans
and fungi, that are characterized by small size, short generation time and an extremely high
rate of direct reproduction within the host (Anderson & May 19794; May & Anderson 1979).

'To counter the onslaught of such rapidly multiplying organisms, the host individual typically
mounts some form of response, aimed at reducing the growth rate of the parasite population.
A successful response may eliminate the parasite from the body of the host (complete recovery),
or may regulate the parasite population at some ‘persisting’ steady level within the host.
Failure of the host to contain the pathogen’s population growth will lead to death. Some
detailed aspects of these responses are pursued in the next section.

Microparasites may complete their life cycles by passing from one host to the next either
directly, or indirectly via one or more intermediate host species. This paper is restricted to directly
transmitted agents, where transmission is achieved by physical contact between hosts or by
transmission stages (specialized or unspecialized) of the parasite which pass into the habitat
of the host and are picked up by inhalation, ingestion or direct penetration of the host’s body.
A special case of direct transmission arises when the infection is conveyed by a parent to its
unborn offspring (egg, embryo or host chromosomes). This process has been named vertical
transmission in contrast to the variety of horizontal transmission processes just described (Gross

1949, 1951; Fine 1975).
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3. INVERTEBRATE RESPONSES TO PARASITIC INFECTION

Vertebrate animals appear to differ from other living organisms in their capacity to react to
disease agents in a highly specific manner by mounting an immunological response. Vertebrates’
immune responses, which are associated with their ability to distinguish between self and non-
self, are characterized by specificity, dissemination, amplification and memory (Hobart &
McConnell 1978; Mims 1977; Fenner & White 1976). These features of the vertebrate immune
response mean that a second or later exposure to a particular infectious agent will evoke an
accelerated response, even at a site remote from the primary infection; this ability to mount an
enhanced response on second exposure is termed acquired immunity. This acquired response can
cause second and later infections to be eliminated very rapidly, with no overt signs of disease,
so that hosts with acquired immunity in effect join a category that is protected from the infection
(analogous to prey species having a refuge that protects them from predators).

T
_
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Ficure 1. Invertebrate response to microparasitic infection, as illustrated by the population growth of bacteria
in the haemolymph of a land snail (Helix pomatia) on first and subsequent exposure to infection. The data
are from Bayne & Kime (1970), and show: (a) first exposure to infection; (b) second exposure, 2 weeks
after first exposure; (¢) third exposure, 1 week after second exposure.

Although invertebrate species are usually able to mount cellular or humoral responses to
parasitic invasion, these responses do not appear to be enhanced on a second or later exposure
to the infectious agent (Bang 19754, ). That is, current evidence suggests invertebrate species
are unable to develop acquired immunity to agents of infectious disease (Jackson et al. 1969;
Salt 1970; Bayne 1973; Bang 1973, 19754; Lafferty & Crichton 1973; Maramorosch & Shope
1975 ; Lackie 1980).

The nature of the initial response to infection appears remarkably uniform among different
groups of invertebrates. In general, amoeboid cells phagocytose small pathogens, while larger
organisms are encapsulated. Such responses can clearly result in the elimination of the parasite
and the recovery of the host; the absence of acquired immunity, however, means that recovered
individuals will pass directly back into the pool of hosts susceptible to further infection. There
is no immune category. This process of recovery and absence of acquired immunity among
invertebrates is nicely illustrated by the experiments of Bayne & Kime (1970) on bacterial
infections in land snails, Helix pomatia. As shown in figure 1, parasitic bacteria were rapidly
eliminated from the snail host by amoebocytic action, but the rate of recovery from infection
was not enhanced by repeated exposure to the parasite.

Prokaryotic and protozoan host species do not appear to be able to mount a response to
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parasitic invasion (Maramorosch & Shope 1975; Manning & Turner 1976). Recovery from
infection is therefore unlikely in such organisms.

In short, there are two main points relevant to our investigation of the overall population
dynamics of invertebrate host—parasite associations. First, invertebrate hosts may or may not
be able to mount a response to parasitic invasion, but, if they do, recovery can occur. Secondly,
responses (whether immunological or non-specific) do not lead to acquired immunity in pro-
karyote or invertebrate eukaryote organisms; hosts that recover from infection are immediately
susceptible to reinfection. This second feature makes the relevant population models simpler
than is typical for vertebrate host species.

4. COMPONENTS OF THE INTERACTION BETWEEN INVERTEBRATE HOSTS
AND MICROPARASITIC INFECTIONS

In the simplest case, we define X(¢) to be the number of susceptible hosts, and Y(¢) the number
of infected hosts, at time ¢. The total population of invertebrate hosts is thus H(¢) = X(¢) + Y ().
In this basic two-component model it is assumed that all infected individuals are infectious;
at a later stage we consider more detailed subdivisions of the host population (where, for
example, there is a latent period in the development of the infection, so that the infected class
Y is broken up into infecteds, which are, or are not yet, infectious).

This simple and conventional (Bailey 1975; Dietz 1974) distinction between susceptible
(uninfected) and infected hosts makes sense by virtue of the extremely high rates of direct
reproduction within the host that pertain for most viral, bacterial, protozoan and fungal in-
fections of invertebrates. More formally, we have defined microparasites to be those for which
such simple, compartmental models afford a good description, in contrast with macroparasites
(including essentially all helminth infections), of which there is typically no direct reproduction
within the host, and of which the effects of the infection upon the host depend on the number
present (rather than simply on presence or absence). These general questions are reviewed
elsewhere (Anderson & May 1978; May & Anderson 1978), and the present work is confined
to microparasitic infections.

To begin, we make the conventional epidemiological assumption that total host population
is held to a constant value, independent of the presence or absence of the infection, by some
unspecified mechanism (Bailey 1975; Dietz 1974):

H(¢t) = H = constant. (1)

We now seek to describe the dynamics of the infection within this constant population; that
is, we seek a differential equation expressing the change in the number of infected individuals
with time, d¥/dt, as a function of ¥ and ecological and epidemiological parameters (including
H itself). The components of this relation are as follows.

(a) Transmission of infection among hosts

In this paper, our attention is restricted to directly transmitted infections (as opposed to those
with indirect transmission, involving one or more species of intermediate hosts). The simplest
assumption is that the rate at which infections are acquired by such direct transmission is
proportional to the number of encounters between susceptible and infected hosts. That is, the
net rate of transmission of the infection is XY, where X is the number of uninfected individuals,
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Y is the number of infected individuals spreading the infection, and the proportionality constant
B is called the ‘transmission parameter’ (#H has the dimension of 1/time). Of all the para-
meters in our models, 4 is by far the hardest to estimate in practical applications. If the age-
specific prevalence of the infection in the host population is known and is in equilibrium, £
can sometimes be estimated indirectly from the typical age at which the infection is acquired
(Dietz 1974) ; this information is rarely available for invertebrate populations (but see Anderson
& May 19795).

10 .
L)
S o5l
| J
0 12 24

time, ¢/day

Ficure 2. The dynamical behaviour of an experimentally induced epidemic of the protozoan Hydramoeba
hydroxena, within a population of the coelenterate Chlorohydra viridissima, is shown. The data points are from
Stiven (196%), and show the observed proportion of hosts infected by day ¢, ¥(t). The solid line is given by
our simple model for the transmission process (namely, equation (5) with # = 0.0043).

The assumption that the overall transmission rate is #XY, although crude, can be shown often
to give a good description of the observed transmission process. In particular, if no individuals
die or recover from infection during the period that a closed population of H hosts is under
observation, the rate of change in the number of infected individuals is (rewriting X = H-7Y)

dy/dt = SY(H-7Y). (2)

Then if ¥, infecteds are introduced into the population of H—Y, susceptibles at time ¢ = 0,
the subsequent course of the infection obeys the familiar sigmoidal solution of the logistic
equation (2):
HY,
Y(t)= - .
=1 H=T) exp (— P @

In figure 2, this theoretical expression is compared with observed data for an epidemic of the
protozoan pathogen Hydramoeba hydroxena within a population of the coelenterate Chlorohydra
viridissima (Stiven 1964, 1967). There is only one adjustable parameter (namely £) in equation
(3), and the agreement between theory and observation shown in figure 2 is encouraging.
Instances where the transmission term SXY describes the dynamics of epidemics and rumours
in human populations have been described by many authors (Kermack & McKendrick 1927;
Bailey 1975; Dietz 1967). We have recently shown that the XY term, incorporated in models
broadly related to those below, gives an excellent fit to data from laboratory experiments on
the regulation of mouse populations by viral and bacterial infections (Anderson & May 1979a4).

Of course, the simple expression AXY is not always sufficient to describe directly transmitted
infection processes. Some general exceptions are discussed by Bailey (1975), Yorke et al. (1979)
and Anderson (1980b), and a refinement of particular relevance to many invertebrate host—
parasite systems is pursued below (model G).
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(b) Host mortality

Uninfected hosts are assumed to die at a rate b per individual, giving a net death rate 4X.
The death rate 4 is assumed to be independent of the age of the individual (‘type II survivor-
ship curve’), and corresponds to an expected lifespan of 1/4 time units.

We define a parasite to be an organism that not only depends on its host to provide habitat
and nutrition, but also causes some degree of ‘harm’ to the host (Anderson & May 1978,
1979a; May & Anderson 1979; Price 1980). At the population level, such harm is measured by
the parasite’s effect upon the vital rates (birth and death rates) of the host population. Here
we begin by assuming that infection acts to increase the death rates, such that the death rate
per individual infected host is 6+, giving a net death rate (b+«)Y. The parameter a
represents the rate of disease-induced mortality, again assumed to be independent of the host’s
age; the expected lifespan of an infected host is thus 1/(b+a). The effect of parasites on the
reproductive rate of infected hosts is considered below (model B).

Values of b and « for a range of invertebrate hosts, infected with various viral, bacterial,
protozoan and fungal parasites, are collected in table 1.

(¢) Recovery from infection

As discussed in §§ 2 and 3, infected hosts are often able to recover from infection (see figure 1).
As a rough approximation, we assume an individual recovery rate y (although a more accurate
assumption will often be that there is recovery after some specific interval of time has elapsed);
the net rate at which hosts recover and pass back into the pool of susceptible individuals is yY.
Under our assumption and in the absence of host mortality, the average duration of infection

is 1/y.
(d) Number of infected hosts

Putting all these pieces together, we see the net rate at which infected hosts appear is fX7Y,
and the net rate at which they are lost (by natural or disease-induced death, or by recovery)
is (¢ +b+7) Y. The rate of change of Y is therefore

dY/dt = XY —(a+b+7y)7Y. (4)

The conventional epidemiological assumption that the total host population H is constant,
equation (1), enables us to eliminate X(¢) from equation (4) and recast it as an equation for
the single dynamical variable Y (¢):

d¥/d¢ = [(BH—a—b—y)-pY]Y. (8)

This is a logistic equation for ¥(t), and its features have been discussed by many people (e.g.:
Kermack & McKendrick 1927; Bailey 1975; Dietz 1974). The discussion can, however, be
simplified, and some new insights gained, by rewriting equation (5) in an appropriately dimen-
sionless form. The notion that ecological equations should be brought to dimensionless form,
so that attention can be focused on the meaningful combinations of parameters, has been
discussed and illustrated elsewhere (May 1976, ch. 2; May et al. 1979). More generally,
Montroll & Shuler (1979) have discussed the role of rescaling and of dimensionless parameters
in the natural sciences and engineering, arguing that many of the observed patterns of success
(ship and plane design) and difficulty (controlled nuclear fusion) are attributable to whether
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TABLE 1. NATURAL AND PATHOGEN-INDUGED MORTALITY RATES FOR INVERTEBRATE HOSTS OF
SOME VIRAL, BACTERIAL, PROTOZOAN AND FUNGAL _PARASITES-(BASED ON LABORATORY STUDIES)

pathogen-
natural induced
mortality mortality
rate, b  rate,a

pathogen host week™t  week™! reference
é viruses
>_‘ >-‘ sack brood virus Apis mellifera 0.17 1.2 Mussen & Furgala (1977)
= nuclear-polyhedrosis virus Cadra cautella 0.061 0.54 Hunter et al. (1973)
O L nuclear-polyhedrosis virus  Hyphantria cunea 0.003 0.80 Nordin & Maddox (1972)
Qﬁ - non-inclusion virus Panonychus citri 0.34 0.91 Gilmore & Tashiro (1966)
RO A.B.P. virus Apis mellifera 0.25 1.9 Kulincevic ¢t al. (19770)
: R.O. virus Oryctes rhinoceros 0.10 0.19 Zelazny (1973)
O nuclear-polyhedrosis virus Porthetria dispar 0.060 0.63 Doane (1967)
= w nuclear-polyhedrosis virus ~ Malacosoma americanum 0.070 0.37 Smirnoff (1967)
EI % bacteria
L_)O Bacillus thuringiensis Simulium vittatum 0.035 2.4 Lacey & Mulla (1977)
I - Bacillus thuringiensis Choristoneura fumiferana 0.001 4.0 Smirnoff (1973)
8u L Aeromonas punctata Anopheles annulipes 0.36 2.9 Kalucy & Daniel (1973)
U)g 0 Erwinia spp. Colladonus montanus 0.031 0.17 Whitcomb et al. (1966)
8 .
= E protozoa
ay- Nosema stegomyiae Anopheles albimanus 0.23 0.41 Anthony ¢t al. (1973)
B b= Pleistophora schubergi Hyphantria cunea 0.003 0.036  Nordin & Maddox (1972)
Herpetomonas muscarum Hippelates pusio 0.17 0.43 Bailey & Brooks (1972)
Tetrahymena pyriformis Culex tarsalis 0.26 0.66 Finlayson (1950)
Mattesia dispora Laemophloeus minutas 0.022 0.11 Grassmick & Rowley (1973)
fungi ,
Beauveria tenella Aedes siemensis 0.026 0.50 Pinock et al. (1973)
Beauveria tenella Culex tarsalis 0.11 0.84 Pinock et al. (1973)
Beauveria bassiana Mousca domestica 0.27 0.74 Rizzo (1977)
Beauveria bassiana Hylemya antiqua 0.30 0.55 Rizzo (1977)
Beauveria bassiana Phormia regina 0.24 0.56 Rizzo (1977)
Metarrhizium anisopliae Mousca domestica 0.27 0.38 Rizzo (1977)
Metarrhizium anisopliae Phormia regina 0.24 0.42 Rizzo (1977)
Metarrhizium anisopliae Hylemya antiqua 0.30 0.48 Rizzo (1977)
Aspergillus flavus Culex peus 0.020 0.17 Toscano & Reeves (1973)
Aspergillus flavus Culex tarsalis 0.061 0.22 Toscano & Reeves (1973)
Fusarium oxysporum Culex pipiens 0.027 0.62 Hasan & Vago (1973)

the characteristic number of dimensionless parameters is small or large. In equation (5) we

—
§ ﬁ rescale the variables Y and ¢, using the new dimensionless variablesy = Y/Hand¢' = (x+b+7)t;
@) e y is simply the infected fraction of the total population (often called the prevalence of the infec-
o tion), and ¢ is the time measured against the natural time scale 1/(x+ & +7). Furthermore,
E @) we define a dimensionless parameter R:

o)
~ v R = pH/(a+b+7). (6)
:t“£ Equation (5) now becomes
=0 dy/dt" = y[(R—1) - Ry]. (7)
=
59
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It is immediately evident that the dynamics of the infection, the shape of the curve y(t'), depends
only on the quantity R. The scale of the time axis depends on («+5+7), and the absolute
scale of the infected population Y depends on H, but the qualitative nature of the host-parasite
interaction here depends only on R.

Two cases may be distinguished.

(i) If R > 1 (fH > a+b+7), the infection persists within the host population, and the

prevalence eventually approaches a steady value (obtained by putting dy/d# = 0 in equation
(7)) of

The associated value of the susceptible fraction of the population, x = X/H, is clearly
» x = 1/R. (9)

(if) Conversely, if R < 1 (fH < a+b+7), the right side of equation (7) is necessarily
negative for all values of y, and the disease cannot persist within the host population. That is,
y(¢) always decreases, and the steady solution is y - 0, x - 1.

() Basic reproductive rate of the parasite

These results can be explained in a more directly biological way. Returning to equation (16),
we see that R is defined to be the expected number of secondary infections (#H) produced
within the infectious period, 1/(ct + 4 +7), of one newly introduced host. That is, R is the basic
reproductive rate of the parasite (Dietz 1974; Anderson 1980a), precisely analogous to the
conventional ecologists’ and demographers’ ‘expected number of offspring’, R, (see, for
example, Krebs 1978). Clearly the infection can persist in the host population if, and only if,
R > 1.

Moreover, equations (9) and (8) for the equilibrium fraction of susceptible and infected
hosts can also be obtained by an intuitive argument. At equilibrium, each infected host should
produce on average one secondary case. Since a single infection is capable of producing R
secondary cases, the susceptible fraction of the host population must be reduced to a value x
such that Rx = 1; this gives equation (9), and thence (since x+y = 1) equation (8).

This concept of a basic reproductive rate for parasitic infections is central to any under-
standing of the circumstances under which diseases persist within host populations. Environ-
mental factors will often cause the host density H and/or the parameters f#, b and « to vary
seasonally, or from one year to another, in such a way that the basic reproductive rate R
sometimes falls below unity. When this happens, the infection will only persist from year to
year if the periods during which R is less than unity are shorter than the maximum lifespan of
an infected host or of a free-living infective stage. This point is pursued in § 13.

More generally, expressions for the basic reproductive rate R can be obtained for, and are
central to the population biology of, all parasitic infections, whether microparasites or macro-
parasites and whether transmitted directly or indirectly (Macdonald 1957; Dietz 1974; Bailey
1975; Anderson & May 1978, 19794; May & Anderson 1979; Nold 1979).

(f) Threshold host density

The condition R > 1 for maintenance of the infection may equivalently be expressed as the
requirement that the host population exceed a threshold density (Kermack & McKendrick 1927;
Anderson & May 1978 19794; May & Anderson 1978, 1979).
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For the system of equations discussed above, the threshold host density is defined as
Hy = (a+b+7)/8. (10)
Equation (6) for R can then be rewritten as
R = H/H,. (11)

The equivalence between the requirement R > 1 and H > Hy, for maintenance of the in-
fection, is thus clear. The requirement H > Hy could, of course, have been obtained directly
from the requirement that the right side of the original equation (5) be positive for small ¥;
the above discussion, however, makes the underlying biological reason more explicit.

Several biological conclusions about the persistence of parasitic infections within host popu-
lations may be drawn from equation (10). Microparasites with low transmission efficiency (4
small) will in general only persist within high density populations of hosts; conversely, micro-
parasites with high transmission efficiency (8 large) can persist in low density host populations.
Diseases with low transmission efficiency may, however, be able to persist in relatively low
density host populations, provided that the expected lifespan of infected hosts is long (that is,
1/(e+b+7) large). This can happen if natural and parasite-induced mortality are both low
(e + 6 small) and the average duration of infection is long (y small). Highly pathogenic para-
sites (o large) will only survive in relatively high-density host populations.

5. BASIC DYNAMIGS OF HOST-PARASITE ASSOCIATIONS: MODEL A

The discussion in § 4 is mainly review of conventional epidemiological ideas, albeit with
more emphasis on the overall population aspects than is common. Our purpose was to create
a framework, and to develop some basic notions, in a relatively simple context. We now break
new ground by treating the total host population H as a dynamical variable, and explore the
circumstances under which parasitic infections will actually regulate their host populations.

That microparasites can have pronounced effects on the growth characteristics of their host
populations has been clearly demonstrated in laboratory studies. For example, Park (1948)
and Finlayson (1950) have shown that arthropod populations infected with protozoan parasites
are depressed to densities significantly below the disease-free levels (see figure 34, b). In some
cases, pathogens may regulate the growth of host populations, in the absence of any other
constraints (such as resource limitation). Doerman (1948), for example, demonstrated how the
introduction of a phage virus, T4 bacteriophage, into populations of the bacterium Escherichia
coli converted patterns of exponential growth into regulated growth toward an equilibrium
bacterial density (see figure 4a). Anderson’s (1957) work on the influence of the bacteriophage
Vi-type A on the growth of populations of the bacterium Salmonella typhi, illustrated in figure
4b, provides another example. Anderson’s study, moreover, gives a good example of the
threshold phenomenon: as shown in figure 45, the population of phage virus did not increase
above its introduction level until its host bacterial population exceeded a threshold density;
once this threshold was exceeded, the virus population increased and, by its effects on bacterial
survival and reproduction, transformed the exponential growth of the host population into
decline towards an equilibrium density.

To arrive at a fully dynamic model for the host-parasite system, we need to add one more
ingredient to the recipe discussed in §4, namely a description of the birth process whereby
new susceptibles are recruited into the host population. We assume that the individual host
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Ficure 3. Two laboratory examples of the impact of parasitic infections on the population growth of their host:
(a) Tribolium casteneum infected with the protozoan parasite Adelina triboli (data from Park (1948)); (b)
Laemophloeus minutus infected with the protozoan Mattesia dispora (data from Finlayson (1950)). In both cases,
the solid lines depict the uninfected population, and the dashed lines depict the infected population.
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Ficure 4. Two figures illustrating the impact that bacteriophages can have on their bacterial hosts: (a) a popu-
lation of Escherichia coli infected with T4 phage virus (data from Doermann (1948); the arrow shows when
the virus was introduced into the bacterial population); (b) a population of Salmonella typhi (Vi-type A)
infected with the phage virus Vi-phage A (data from Anderson (1957); the solid line depicts the density of
bacteria, and the dashed line the density of phage particles). Notice that in (b) the phage population does
not ‘take off” until the bacterial host population exceeds some threshold value.

birth rate, a, is independent of whether or not the host is infected; thus the net birth rate is
a(X+7). The way in which the populations of susceptibles and infecteds change as a result of
various kinds of gain and loss terms is depicted schematically in figure 5. Susceptible individuals
are gained by birth (a(X+ Y)) and by recovery of infecteds (yY), and are lost by natural death
(6X) or by acquisition of infection (#XY). The rate of change of X(¢) is thus

dX/dt = a(X+7Y)—-bX—pXY+vY. (12)
The rate of change of Y(¢) is, as above, equation (4), but repeated here for clarity,
dY/dt = XY —(a+b+7)Y. (13)
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Ficure 5. Schematic representation of the assumptions embodied in model A. The model is defined more
explicitly by equations (12)—(14), and the various rate parameters are as listed in appendix A.

The rate of change of the total population of hosts, H, is obtained by adding equations (12)
and (13) to give
dH/dt = rH—aY. (14)

Here we have defined 7 = a—b; r is the intrinsic growth rate of the disease-free host population,
and we assume r > 0. Any two of these three equations (in conjunction with the identity
H = X+7) constitute a complete description of the dynamical behaviour of the system. We
usually choose to work with equations (13) and (14).

In equations (12)—(14), the description of the transmission of parasitic infections remains
asin § 4, and the parasite’s basic reproductive rate, R, is still defined by equation (6). Likewise
the threshold desnity, Hy, of the host population for maintenance of the infection remains as
defined by equation (10); the criterion H > Hy (with Hy given by equation (10)) equivalently
follows directly from the requirement that the right side of the equation (13) be positive for
small Y. In contrast with the situation in §4, hbwever, the host population, H, is not a pre-
determined constant, but is a dynamic variable; in the absence of the disease, H(¢) increases
exponentially at the rate r (as can be seen directly from equation (14) with ¥ = 0). Thus,
if the host population is initially below the threshold value (H < Hy and R < 1), it grows
exponentially until it eventually does attain a density high enough to sustain the infection.
When this happens (H > Hy and R > 1), one of two things follows.

(i) If the parasite is sufficiently pathogenic,

a >, (15)

it regulates the host population at a stable equilibrium level, H* (see appendix B). This
disease-controlled equilibrium population is

e - Hetbty)

ICEDR (1e)
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or, equivalently (from equation (10)),

a
oa—7

H* = (%) . (17)
Equation (17) makes it explicit that /* must exceed Hy, although H* ~ Hy if @ > r. Of
this equilibrium population of hosts, the fraction infected (that is, the prevalence, y = Y/H)
follows directly from equation (14):

y* =r/a. (18)
Notice that, if « is very much larger than 7, the prevalence of the infection will be very low, and

stochastic effects may extinguish the disease if the equilibrium host density, H*, is low.
(ii) Conversely, if equation (15) is not satisfied,

a <7, (19)

the disease is not able to regulate the host population to a stable level. This is biologically
obvious; if births exceed deaths, even for infected hosts (2 > b+a and r > a), the disease
cannot halt population growth. In this case, the system eventually settles to a state in which
the total population grows exponentially, at a rate p, which is less than r:

p=r—a. (20)

Asymptotically, the host population becomes very large (H > Hp), and essentially all hosts
are infected (Y* — H*;y* - 1). The number of susceptibles remains roughly constant at
X* ~ (a+7)/p, thus constituting an ever diminishing fraction of the exponentially growing
total population (see appendix B). This ‘run away’ of the host population for r > « is a
consequence of t'.e omission of any density-dependent effects, other than the disease itself, in
our model. In reality, other factors, such as resource limitation, will limit population growth,
and the prevalence of infection will rarely, if ever, approach unity.

The relation between the various ecological and epidemiological parameters and the overall
behaviour of the host-parasite system is explored in figure 6, which shows how the equilibrium
host population, H*, and prevalence of infection, y*, depend on the parameters «, b, ¥ and .

Figure 6a shows H* as a function of the pathogenicity parameter a (equation (16)). As «
first exceeds the intrinsic growth rate, 7, of the host population (equation (15)), increasing
pathogenicity results in a greater degree of depression of the host population. Eventually,
however, there comes a point when the rate of loss of infected hosts begins to have a detrimental
effect on disease transmission, and beyond this point increased values of & make for less de-
pression of the host population. This suggests that, in selecting a pathogen for biological control
of an invertebrate pest species, we should not simply seek the most pathogenic (largest «)
agent available, but instead try to estimate the optimal pathogenicity (corresponding to the
trough in figure 6a) for sustained control. This point is elaborated elsewhere (Anderson 19795).

Figure 65 illustrates the corresponding relation between prevalence, y*, and pathogenicity,
«, equation (18). Here y* decreases steadily with increasing «, suggesting that low levels of
prevalence of infection in natural populations may not simply reflect poor transmission, but
may betoken relatively high pathogenicity. Low prevalence levels are not inconsistent with
the disease actually regulating the host population.

Figure 6¢ depicts H* as a function of the recovery rate y, showing that high recovery rates
result in relatively large host populations. Conversely, high transmission efficiencies (large
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FiGure 6. These figures illustrate the relation between the equilibrium density of hosts H* or the equilibrium
prevalence of infection y* and various of the rate parameters in model A: (¢) H* as a function of parasite
pathogenicity, a (with a = 2, b = 1, ¥y = 0.1 and 8 = 0.05); (b) the corresponding plot of y* against a;
(¢) H* as a function of the recovery rate, y (with @ = 3 and the other parameters as in (a)); (d) H* plotted
against the transmission coefficient, 8 (with againa = 2,5 = 1,77 = 0.1 and @ = 3); (¢) H* plotted against
the natural mortality rate, b, of the hosts (witha = 2, y = 0.1, # = 0.05 and a = 4); (f) y* as a function
of b (with the other parameter values as in (¢)).

values of 8) lead to relatively low host populations, as demonstrated in figure 6d4. The natural
death rate, b, of hosts also influences H* and y*, as shown in figure 6e, f respectively, with
higher death rates understandably resulting in lower values of the equilibrium host population
and the prevalence of infection.

More broadly, rapid turnover in the host population, whether produced by the disease ()
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or by natural causes (4), tends to reduce the equilibrium abundance of a disease organism
(see figure 65, f). Just as high rates of reproduction are characteristic of free-living organisms
that persist in unstable habitats (‘r strategists’), so, in an analogous manner, relatively high
transmission efficiencies (large ) are required for the persistence of parasites whose host popu-
lations turn over rapidly (unstable parasite habitat).

o
8 [~ 0 8 |
Ve
(a) 702 (b) /

1 /
P / 107
/
/
s
| | | |
0 5 10 0 5 10

time (arbitrary units)

Ficure 7. The dynamical behaviour of the host population H is shown as a function of time ¢, for (a) various
values of the parasite pathogenicity a, and (b) various values of the transmission coefficient 8. In both
figures, the dashed line is for the purely exponential growth of the host population occurring in the absence
of infection (@ = 0 or # = 0); since the host population is plotted logarithmically, such exponential growth
shows up as a straight line. The rate parameters have the values r = 1.0, b = 3.0, y = 0.01, g = 0.001
(in (a)), and @ = 0.9 (in (4)). The host population is initially H(0) = 1000.

The threshold density for disease maintenance also depends on the parameters «, 4, ¥ and f,
as described by equation (10). Some of the dynamical properties discussed above are illustrated
in figure 7, which shows the host population, H, as a function of time, ¢, for various values of «
(figure 7a) and for various values of B (figure 74). In all cases, the initial host population is
below the threshold value, Hy, and grows exponentially until it exceeds Hy; the subsequent
dynamical fate of the population (regulation to a constant value, or exponential growth at a
diminished rate) depends on the interplay among the parameters, as shown.

There remains the central biological question, do natural populations of invertebrates
typically have microparasitic infections capable of regulating them (x > r), or not?

Viruses, bacteria, protozoans and fungi certainly are often observed in natural communities,
particularly within arthropod species (Tinsley 1979; Overstreet 1978; Crawford & Kalmakoff
1977; Breed & Olson 1977; Beesley 1977; Smith 1976; Tinsley & Entwistle 1974; Andrews &
Castagna 1978; Ignoffo et al. 1976 ; Zacharuk & Tinline 1968; Whitcomb et al. 1966 ; David 1965 ;
Tanada 1964; Aizawa 1963; Bergold 1953, 1958; Steinhaus 1958, 1963 ; Bird 1955; Whitcomb &
Tully 1979). Where long-term studies exist, such diseases are seen to persist, although their
prevalence may vary seasonally and may be characterized by sudden changes or epidemics
(Beesley 1977, 1978; Andrews & Castagna 1978; Zelazny 1977; Tanada & Omi 1974; Pramer &
Al-Rabiai 1973 ; Stairs 1972; Putman 1970; Bird & Elgee 1957; Bird & Whalen 1953).
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Unfortunately, very few field studies have yielded estimates both of the rate of disease-
induced mortality and of the natural rate of increase of the host population, so that it is hard
to say how frequently « exceeds r. Laboratory studies, however, clearly indicate that many
of these disease agents are highly pathogenic. The data compiled in table 1 testify to this point,
and, furthermore, suggest that viral and bacterial agents tend to be the most pathogenic. The
disease-induced death rates, a, in table 1 are typically about an order of magnitude greater
than the corresponding natural death rates, 4; the effective birth rates a for these invertebrates
are harder to determine. The incompleteness of the information is compounded by the fact
that laboratory studies tend to underestimate natural mortality rates (as many natural causes
of death are not present in the laboratory), and by the biases introduced by invertebrate
pathologists’ interest in the more pathogenic disease agents by virtue of their possible use in
biological control programmes. Some of these problems are discussed more fully by Hassell
et al. (1976) and by Tinsley (1979).

All these caveats having been issued, it remains plausible that many of the infections cata-
logued in table 1 may contribute, wholly or in part, to the regulation of their invertebrate host
populations. '

We now proceed to add a variety of realistic refinements to our basic model A.

TABLE 2. PARASITE-INDUCED REDUCTION OF HOST REPRODUCTIVE POTENTIAL

rate of reproductiont (per host)
A

pathogen host uninfected, a infected, a(1—f) reference
Nosema whitei Tribolium castaneum 1.9 per week 1.7 per week Milner (1972a)
Amblyospora sp. Culex salinarius 2.8 per lifespan 2.4 per lifespanf Andreadis & Hall (1979)
non-inclusion virus Panonychus citri 1.8 per week 0.93 per week Gilmore & Tashiro (1966)
Mattesia grandis Anthonomus grandis 1.7 per week 1.2 per week McLaughlin (1965)
Nosema stegomyiae Anopheles albimanus 2.4 per first 2.3 per first Anthony et al. (1973)

gonotrophic cycle gonotrophic cycle

rhabion virus (R.O.V.) Oryctes rhinoceros 1.9 per week 0.45 per week Zelazny (1973)

1 Assumes 1:1 sex ratio. } No difference between infected and uninfected lifespans.

6. PARASITE-INDUCED REDUCTION OF HOST REPRODUCTION: MODEL B

Many microparasites of invertebrates not only increase the death rate but also decrease the
reproductive rate of infected hosts. For example, as shown in table 2, many protozoan infec-
tions substantially reduce the reproductive capabilities of the host (McLaughlin 1965, 1971).

The basic model A may be modified to incorporate this effect by taking the birth rate of
infected hosts to be a(1—f). Here £ (1 > f > 0) measures the severity of the parasite’s effect
on host reproduction: f = 1 corresponds to elimination of all reproduction by infected hosts
(as happens, for example, when the parasite castrates the host); f = 0 is the opposite extreme
where there is no effect. In this way, we obtain model B:

dX/dt = a(X+7Y)—bX—-pXY +(y—fa) ¥; (21)
dY/dt = XY — (e +b+7)Y; (22)
dH/dt = rH— (¢ +fa) Y. (23)

The dynamics are analysed in appendix B. The basic reproductive rate, R, of the parasite

48 Vol. 2g91. B
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and the threshold host density, H;, for maintenance of the infection remain as in model A.
The criterion for the parasite to be able to regulate its host population (after the threshold is
exceeded) is, however, modified from equation (15) to the less stringent requirement

a > a(l—f)—b. (24)

We recall the underlying biological reason for this condition, namely that deaths should outrun
births for infected hosts, which makes it clear why such depression of the birth rate should
facilitate regulation.

If equation (24) is satisfied, the host population settles to the stable equilibrium value

H* = (af—};{ir) Hy, (25)

with Hy defined by equation (10). The equilibrium prevalence of infection is

y* = r/(x+fa). (26)

Other things being equal, both H* and y* are lower than when parasites have no effect on
host reproduction (f = 0).

Two special instances of equation (24) are of interest.

First, if infected hosts are unable to reproduce (f = 1), equation (24) is automatically satis-
fied (even if & = 0), and the disease is always able to regulate the host population. This
applies to the many pathogens that castrate infected hosts; one example is the protozoan
Pleistophora cragoni, which castrates the sand shrimp Cragon nignianda (Breed & Olson 1977).

Secondly, a parasite that reduces host reproduction without affecting host survival (« = 0)
can regulate its host population provided that 4 > a(1—f). This general circumstance is
illustrated by species of the protozoan parasite Amblyospora, which reduce the rate of repro-
duction of the mosquito host Culex salinarius, but have no apparent effect on survival.

In short, parasites that reduce reproduction in infected hosts have no effect on threshold
densities, but they can more easily regulate host populations, and the equilibrium host densities
are lower.

7. VERTICAL TRANSMISSION: MODEL C

So far, we have considered pathogens that are transmitted horizontally between hosts. But
many microparasites of invertebrates are transmitted vertically from parent to unborn offspring.

Two basic types of vertical transmission are conventionally distinguished. In transovarial
transmission the pathogen gains entry to the egg or embryo within the host, via infection of
the reproductive organs of the parent. For example, the eggs of the insect Plodia interpunctella
often contain spores of the protozoan: Nosema plodiae, with the infection being acquired during
egg formation (Kellen & Lindegren 1973). In certain genera of the microsporidian protozoan
parasites, transovarial transmission appears to be the principal mechanism by which infection
is passed from host to host (Chapman ez al. 1966; Kellen et al. 1966; Andreadis & Hall 1979).
Similarly, many virus pathogens of insects rely on this form of transmission (Smith 1967, 1976;
Hukuhara 1962). In transovum transmission the pathogen is adsorbed on, or contaminates, the
exterior of the egg during the birth process; infection results when the newly hatched host
contacts or eats its own egg case. Transovum transmission is common among pathogens of
arthropods (Neelgund & Mathad 1978; Smith 1976; Doane 1969; Steinhaus 1963).
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Transovarial and transovum transmission both have the same effect on the dynamics of the
host—parasite association, in that. offspring of infected parents are more likely to become
infected than are offspring of uninfected parents. The efficiency of vertical transmission, how-
ever, varies widely among host—parasite associations. Thus, only 239, of the progeny of the
silkworm Bombyx mori infected with a cytoplasmic polyhedrosis virus acquired infection
(Hukuhara 1962). In contrast, 90%, of the progeny of the mosquito Culex salinarius infected
with the protozoan Amblyospora developed the disease (Andreadis & Hall 1979).

a(l —q)
A birth I:}'E_
a aq
SUSCEI;(TIBLES infection |—» INFE()Z,TEDS
B8
Yb atb

| death l I deathl Y

- Jl recovery ll

Y

FiGURE 8. Schematic representation of the assumptions embodied in model C. The model is defined
more explicitly by equations (27)—(29), and the various rate parameters are as listed in appendix A.

To incorporate vertical transmission in the basic model A, we assume that a fraction
g(1 > ¢ > 0) of the offspring of infected hosts pass directly into the infected class. Thus the
net birth rate from infecteds, aY, is apportioned between a(1—g) Y appearing as new suscep-
tibles, and aqY appearing as new infecteds. In addition, horizontal transmission is included
as before. The resulting model C is depicted schematically in figure 8, and can be written

dX/dt = a(X+Y)—bX—pXV+(y—ag) ¥, (27)
dY/dt = AXY - (a+b+y—ag) ¥, (28)
dH/dt = rH—-aY. (29)

The dynamical behaviour of this set of equations is analysed in appendix B. The basic
biological considerations of the parasite’s reproductive rate, R, and the host threshold density,
Hy, are now modified by the ability of a single infected host to produce secondary cases by
vertical as well as by horizontal transmission. The threshold host density, Hy, above which ¥
will increase from small initial values, is (as can be seen from equation (28))

Hyp = (a+b+7y—aq)/B. (30)

Thus the presence of vertical transmission (¢ # 0) tends to lower H,, making it easier for the
parasite to persist at relatively low host densities. We might therefore expect vertical
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transmission to be characteristic of microparasitic diseases that are endemic in low-density
invertebrate populations, or in seasonal environments where host densities are low during
certain months of the year (Tinsley 1979; Smith 1976).

The criterion for the disease to be able to regulate its host population is again equation (15),
o > 1, as in the basic model A. The stable equilibrium host population, H*, is again given by
equation (17), but with equation (30) replacing equation (10) for Hy, so that

« _ dlx+b+y—ag)
H* = Y CET (31)
Thus H* is lower than it is without vertical transmission (¢ = 0). The prevalence, y*, is
again given by equation (18), y* = r/e.

- Conversely, if & < 7 (equation (19)), the disease does not regulate the host population,
which asymptotically grows exponentially at the diminished rate, p = r—a, of equation (20).
Notice that it can, in principle, be that the threshold density, Hy, of equation (30) is negative
(if ag > a+b+7). If this happens, it necessarily follows that r > a, and the disease will
become established at arbitrarily low host levels but is not able to regulate the host population.

Some people have suggested that certain species of microparasites rely entirely on vertical
transmission, with horizontal transmission either absent or negligible (Andreadis & Hall
1979; Kellen et al. 1966; Chapman et al. 1966). We show in appendix B, however, that, in
the absence of horizontal transmission (# = 0), the prevalence of infection asymptotically
tends to zero under all circumstances. Some degree of horizontal transmission is therefore
essential for a parasitic infection to persist.

In short, vertical transmission lowers threshold host densities (possibly to zero) and
equilibrium host levels (if they exist), but does not directly affect the ability of the parasite to
regulate its host population. Microparasitic infections cannot be maintained purely by vertical
transmission.

8. LATENT PERIODS OF INFECTION: MODEL D

Many pathogens undergo an incubation or latent period within the host before beginning
to produce transmission stages (for horizontal transmission) or to contaminate or infect unborn
progeny of the host (for vertical transmission). Some examples of such incubation periods are
listed in table 3.

The basic model A can be modified to incorporate this feature, by separating the infecteds
into two classes: the latent class (infected but not yet infectious), comprising M(¢) individuals
at time ¢; and the infectious class, comprising Y(¢) individuals. Hosts are assumed to pass from
latent into infectious at a constant individual rate, v, so that the typical duration of the latent
period is 1/v (in reality, the latent period is more often a fixed time interval, but our rough
treatment captures the essentials). This model D is represented schematically in figure 9, and
obeys the following equations:

dX/dt = a(X+M+Y)-bX—pXY +vY, (32)
dM/dt = BXY — (b+v) M, (33)
dY/dt = vM—(ax+b+7)7Y, (34)
dH/dt = rH-aY. (35)

We need only three of these four equations, along with the identity H = X4+ M+ Y.
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TABLE 3. INCUBATION PERIODS (1/v) OF SOME VIRAL AND PROTOZOAN PATHOGENS

parasite host incubation period/day reference
viruses
granulosis virus Heliothis ormigera 2-5 Whitlock (1977)
nuclear-polyhedrosis virus Heliothis ormigera 3-5 Whitlock (1977)
non-inclusion virus Panonychus citri 2-3 Gilmore & Tashiro (1966)
non-inclusion virus Panonychus ulmi 3 Putman (1970)
nuclear-polyhedrosis virus Telea polyphemus 5-10 Smith & Wyckoff (1951)
protozoa
Vairimorpha necatrix Heliothis zea 7 Fuxa & Brooks (1979)
Mattesia grandis Anthonomus grandis 7 McLaughlin (1965)
‘birth
a a a
SUSCEPTIBLES R INFECTEDS INFECTIOUS
5% infection NOT YET 3 HOSTS
8 INFECTIOUS Y
M
b b b+a
I death I l death | | death |
recovery
Y

FIGURE 9. Schematic representation of the assumptions embodied in model D. The model is defined
more explicitly by equations (32)~(35), and the various rate parameters are as listed in appendix A.

The analysis of this system is outlined in appendix C. Beginning with the basic population
biology of the situation, we note that the parasite’s reproductive rate R, as defined and dis-
cussed in § 4, is here

- (&) ()
R = (a+b+y b+v) (36)
The threshold host density for persistence of the disease, given by the requirement R > 1,
is now
H. — (oc+b+y) b+v) (37)
T — /3 b

Thus the threshold exceeds that in the absence of latency, equation (10), by the factor (b +v) /v.

Biologically, this factor arises from the possibility that infected individuals will die before

becoming infectious; the factor is large if the latent period is relatively long (v small in relation

to b), and is essentially unity if the latent period is relatively short (v large in relation to b).
The condition for the disease to be able to regulate the host population is

o > [1+(ax+b+7y)/v]. (38)

If equation (38) is satisfied, the host population may settle to a stable equilibrium value

a
B = iy (39)
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The prevalence, as before, is given by equation (18). Alternatively, the system may exhibit
stable cyclic oscillations, centred around the equilibrium values. Broadly, there will tend to
be an equilibrium point if the latent period is either very short (large v) or very long (small v,
but with equation (38) satisfied), or if the pathogenicity, «, is large compared to other rate
parameters; stable cyclic behaviour can ensue if « and v are comparable in magnitude, and
both significantly larger than the vital rates (a, b, 7 = a—b) of the host population. In the
" absence of data to guide the discussion, further consideration of the circumstances under
which the disease-regulated host population exhibits a stable point or stable cyclic behaviour
is relegated to appendix C.

o (arbitrary units)

v (arbitrary units)

Ficure 10. For model D, this figure shows the domain of a—v parameter space in which the disease regulates
the host population in a stable or a cyclic equilibrium state (the unshaded region), and the domain in
which the host population grows exponentially, with the disease unable to regulate it (the shaded region).
As always, a represents the parasite pathogenicity and v the rate at which infected hosts become infectious
(1/v measures the duration of the latent period); the other rate parameters are taken here to be a = 3,
b=1,y=0.1.

On the other hand, if equation (38) is not satisfied, the host population continues to grow
exponentially, albeit at a rate less than the disease-free rate, 7, until limited by other ecological
factors.

The condition, equation (38), for existence of disease-controlled equilibrium is more restric-
tive than the simple condition & > r of model A. Moreover, the equilibrium host population is
larger than for model A. Both these effects become increasingly pronounced as the latent
period lengthens (that is, as -1/v increases). As illustrated in figure 10, pathogens with long
incubation periods (1/v large) are unlikely to regulate host population growth unless they are
highly pathogenic (a large).

9. DISEASE AND STRESS: MODEL E

Various people have argued that the pathogenicity of many parasites of invertebrates
depends on the degree to which the host population is under ‘stress’ from prevailing environ-
mental conditions, such as food shortages, overcrowding, or extremes of temperature or
humidity (David & Gardiner 1965; Hurpin 1968; Bucher & Harris 1968; Breed & Olson
1977). More specifically, the observation that epidemic outbreaks of disease typically occur
when host density is high has led to the suggestion that stress produced by overcrowding
results in increased pathogenicity (Steinhaus 1958; Tanada 1964).
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But we have seen that there are threshold host densities, below which a pathogen cannot
maintain itself. Thus, on simple dynamical grounds, epidemic outbreaks of disease will more
commonly be observed in high-density host populations. No change in pathogenicity need be
invoked to explain such patterns (Bailey 1973).

On the other hand, the immunological competence of vertebrate hosts is indeed closely
correlated with their nutritional state (Scrimshaw ef al. 1968; Mims 1977). It is thus plausible
that malnourished invertebrates are less able to mount a response (whether immunological or
non-specific) to infection than are their well nourished counterparts. For example, Bucher &
Harris (1968) demonstrated experimentally that a cytoplasmic virus of the insect Calophasia
lunula was more pathogenic to malnourished individuals than to well fed controls; conversely,
the same authors showed that the nutritional state of this same species of insect host had no
effect on the pathogenicity of a highly pathogenic nuclear-polyhedrosis virus.

Thus we have at least two independent explanations for the observed association between
epidemics and high host density, one based on population dynamics and transmission thresholds
and the other on density-dependent pathogenicity. As discussed below, we believe that most
of the observed phenomena can be explained by dynamical considerations. Even so, the con-
sequences of density-related pathogenicity deserve exploration, and this we now do.

For simplicity, we assume that the pathogenicity of the parasite is linearly related to host
density:

a(H) = &H. (40)

This assumes that the average level of nutrition declines in direct proportion to the host density,
and that this decline in nutritional state is linked with pathogenicity. Replacing a by &H in
model A, we arrive at model E:

dX/dt = a(X+Y) —bX— BXY +y¥; (41)
dY/dt = pXY— (b+y+&H)Y; (42)
dH/dt = rH—&HY. (43)

The analysis of this set of equations is sketched in appendix D. Following the lines laid down
in § 4, we can see that the basic reproductive rate R of the parasite is now

R = pH/(b+7y +&H). (44)

It immediately follows that R is always less than unity if & > £; that is, the disease can only
be maintained (R > 1) if

B > a. (45)
If this condition is met, the threshold host density (the value of H for which R = 1) is
Hp = (b+7)/(8-8). (46)

Provided that equation (45) is satisfied, the disease will always regulate the host population
to a stable equilibrium value, which can be written (with use of equation (46)) as

H* = HT[1+W”:—7)]. (47)

This relation between H* and the parameter & (which defines the severity of the association
- between pathogenicity and host density) is illustrated in figure 11. As & increases, H* falls
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500

H* 250

03 06
a=p

& (arbitrary units)

Ficure 11. For model E, this figure illustrates the relation between the equilibrium density of the host population,
H*, and the parameter &, which measures the severity of the association between the rate of disease-induced
host mortality and host density (see equation (40)). The other rate parameters have the values a = 4,

= 1,y = 0.1 and £ = 0.5. The general features illustrated here are discussed more fully in the text.

until a point is reached where the high death rate of infected hosts decreases the transmission
efficiency of the infection. Beyond this point, H* rises until the expected lifespan of an infected
host becomes too short for effective transmission to occur; for larger & (& > f) the parasite
cannot persist (R < 1). ‘

In contrast to the earlier models (where ability of the parasite to regulate its host population
depended on the mortality rates), the fate of this system depends wholly on equation (45).
If the transmission efficiency is sufficiently high (8 > &), the disease persists and regulates
the host population; if not (# < &), the disease dies out. The underlying biological reason
is simple: when pathogenicity is related to host abundance, the parasite will always be capable
of regulating population growth, and its main problem is to transmit itself fast enough to
counter-balance the rapid death of infected hosts.

10. DENSITY-DEPENDENT CONSTRAINTS: MODEL F

Until now, the only density-dependent effects acting to regulate the host population have
come from the parasitic infection. When these effects were too weak, our host populations
manifested unbounded exponential growth. In reality, of course, other density-dependent
constraints, such as resource limitation or the action of predators, will sooner or later limit
population growth. Indeed, in natural situations pathogens will often act in conjunction with
other regulatory factors (Lack 1954; Anderson 1980b; Park 1948; Finlayson 1950); two
examples were given in figure 3.

We now extend the basic model A, to include other density-dependent effects. These density-
dependent constraints (induced by resource limitation, predation, or whatever) are assumed
to act on the natural death rate, b, of the host, in a manner linearly proportional to host
density, such that

b(H) = by+sH. (48)

The parameter s measures the severity of the density-dependent constraints on host population
growth. We thus arrive at model F, described by the set of equations

dX/dt = a(X+7Y) — (by+sH) X— BXY +77, (49)
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dY/dt = BXY — (a+bo+sH+7) ¥, (50)
dH/dt = (a—by—sH)H—aY. (51)

In the absence of disease (¥ = 0), the host population obeys a logistic equation, having a
stable equilibrium value

H* = K = (a—by)/s. (52)

Here K is the usual ‘carrying capacity’.
The dynamical behaviour of equations (49)-(51) is outlined in appendix E. As always, the

essentials can be understood by considering the basic reproductive rate R of the parasite,
which here is

R = fH/(a+by+y +sH). (53)

If g < s, then R is ineluctably less than unity, and the disease can never be maintained; the
host population will settle to the disease-free equilibrium value of equation (52). Conversely, if

B> s (54)

the disease can be maintained (R > 1) for sufficiently high values of H, H > H,. This
threshold host density can be obtained by putting R = 1 in equation (53), and is

Hy = (a+bo+7)/(B-5). (85)

We now encounter a second, and new, constraint, associated with the other density-dependent
effects; the infection can only be maintained if

Hy < K. (56)

Here Hy is given explicitly by equation (55), and K by equation (52). If this inequality,
equation (56), is violated (that is, if Hy > K), the threshold host density for maintenance of
the parasitic infection cannot be attained, because carrying capacity constraints prevent the
host population from exceeding the level K.

If both the criteria of equations (54) and (56) are satisfied, the parasite will become established
within the host population, and will regulate it to a stable equilibrium value, H*, which is less
than the disease-free level, H* < K (the explicit expressions for H* and for the prevalence of
infection are given in appendix E). We define a quantity d (1 > d > 0) to measure the degree
to which the host population is depressed below the disease-free level,

d = 1-H*/K. (57)

Figure 12 illustrates these different dynamical possibilities, showing dynamical trajectories
of the system in the ‘phase plane’ of Y(¢) and X(¢) values. In figure 124 Hy lies below K,
and the system settles to a stable equilibrium with the disease maintained in a total host
population less than K. In figure 125, Hy lies above K, and the system settles to the disease-
free equilibrium state at H* = K, independent of the initial conditions.

Equation (54) makes it clear that the ability of the parasite to persist within the host popu-
lation, depressing it below its disease-free level, depends on the transmission efficiency, g,
being large enough. Similarly, equation (56) in conjunction with equations (52) and (55)
requires that « be not too large. These considerations are illustrated explicitly in figures 13
and 14.

Figure 13 shows the domain wherein the parasite and host coexist, as a function of the
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Ficure 12. These are phase-space plots, illustrating the dynamical behaviour of model F, in which there are
density-dependent constraints on the growth of the host population (in addition to the effects of disease-
induced host mortality). In both () and (b), the dashed line is the isocline along which d¥/d¢ = 0, and
the solid line is the isocline along which dX/d¢ = 0; the arrows indicate the directions in which trajectories
must therefore move in the various regions of this X-Y phase plane. In (a), the parameters have the values
a=3,by=1aa=05 v=0.1, =005 and s = 0.01 (whence K = 200 and H; = 40); in this case,
equation (56) is satisfied, and host and parasite stably coexist at the equilibrium point where the isoclines
intersect. In (b), the parameter values are as in (a) except that now # = 0.017; equation (56) is no longer
satisfied (corresponding to the isoclines no longer intersecting), and the system settles to the disease-free
state with H* = K and Y* = 0.

1000~

K 500

parasite
extinction

| |
0 0.6 0.12

P (arbitrary units)

Ficure 13. For model F, this figure displays the domain of K—f parameter space, where host and parasite coexist
at a stable equilibrium point with H* < K and Y* > 0 (the hatched region), and the domain of parameter
space corresponding to extinction of the parasite (H* = K, Y* = 0; the unhatched region). The other
parameter values are here taken to be a+b+7y = 10 (these parameters enter only in this combination)
and s = 0.01.

parameters # and K (from equation (52), K is an inverse measure of s). Coexistence is most
likely when £ and K are both relatively large (s relatively small).

The degree of depression of host density, d, and the prevalence of infection, y*, are shown
as functions of pathogenicity, a, in figure 14 a, b, respectively. Maximum depression is attained
for some intermediate pathogenicity, whereas y* decreases steadily with increasing «. Once «
becomes too large, infected hosts die before effective transmission is achieved, and the disease
is unable to persist in this host population (constrained not to exceed K). Highly pathogenic
organisms are likely to cause their own extinction, but not that of their hosts. Figure 14a
evokes a theme of practical importance that has been sounded earlier in this paper and else-
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Ficure 14. For model F, in which there are density-dependent constraints on host population growth, (a)
shows how the degree of depression of the host population (d = 1—H*/K) varies with parasite patho-
genicity, a; the other parameters have the values a = 3, b = 1, § = 0.05, s = 0.01 and y = 0.1. Figure
(b) shows the equilibrium prevalence of infection y* as a function of a, for the same set of other parameter
values. Similarly, (¢) and (d) display d and y*, respectively, as functions of the host birth rate a; the para-
meter values are again as in (a) and (b), and a = 0.5. The features of these figures are discussed in the text.

where (Anderson 19794; Anderson & May 1979a); for sustainable, equilibrium control of
invertebrate populations, the optimal pathogen is one with some intermediate pathogenicity.

Figure 14¢, d plots d and y*, respectively, as functions of the host birth rate, a. The figures
show that the persistence of microparasitic infections depends importantly on the rate at which
susceptible hosts enter the population. As seen in figure 14¢, high birth rates in the host popu-
lation tend to offset disease-induced deaths, and thus the degree of depression, d, decreases
as a increases. High birth rates also have the effect of enhancing transmission efficiency, and
thus lead to high prevalence of infection, as shown in figure 144.

11. FREE-LIVING INFECTIVE STAGES: MODEL G

We now extend our series of models of the host-parasite system to include a dynamical
description of the populations of free-living infective stages of microparasites. These infective
stages are important in the life cycle of the parasite, carrying the infection from one host to
the next by horizontal, or transovum vertical, transmission. Although it is often a good approxi-
mation to assume, as we have up to now, that the net rate of gain of infected hosts is simply
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proportional to the rate of encounters between susceptible and infected individuals, fXY
(Anderson & May 1979a; Anderson & Finlay 1981), this assumption is not always adequate.

There follows a survey of salient aspects of the natural history of such free-living infective
stages, with particular attention to their lifespan, rate of production and method of trans-
mission. The dynamical consequences of this refinement are then explored.

TABLE 4. ESTIMATED LIFESPANS OF FREE-LIVING INFECTIVE STAGES OF VARIOUS PATHOGENS

(These are estimated maximum lifespans, which can be significantly longer than average lifespans.)

type of maximum
infective lifespan _
pathogen stage year reference

viruses

nuclear-polyhedrosis virus of Trichoplusia ni polyhedra > 6 Jacques (1969)

nuclear-polyhedrosis virus of Gilpinia hercyniae polyhedra 4-9 Thomas et al. (1972)

nuclear-polyhedrosis virus of Kotachalia junodi polyhedra > 1 Ossowski (1959)

nuclear-polyhedrosis virus of Orgyia pseudotsugata  polyhedra 11 Thompson & Scott (1979)

granulosis virus of Pieris brassicae capsule 2-3 David (1965)

virus of Bombyx mori capsule 21 Steinhaus (1960)

non-inclusion virus of Panonychus ulmi viral particle 0.02 Putman (19770)
protozoa

Vairimorpha necatrix spore 2 Fuxa & Brooks (1979)

Nosema whitei spore 1-2 Milner (1972b)

Nosema oryzaephili spore 0.8 Burges et al. (1971)

Nosema melolantha spore 1 Hurpin (1968)

Nosema locustae spore 5 Henry & Oma (1974)
bacteria

Bacillus larvae spore 0.014  Wilson (1972)

Bacillus noctuarum spore >1 White (1923)

Coccobacillus acridianum spore 2 d’Herelle (1915)

Streptococcus pluton spore 1.5 Stephens (1957)

Bagcillus thuringiensis spore 0.8 Raun et al. (1966)
fungi

Nomuraea rileyi conidia 0.008  Ignoffo et al. (1976)

(a) Lifespan of infective stages

The infective stages of some microparasites are morphologically well defined. This is so for
the spores of bacteria, protozoans and fungi, which often possess tough proteinaceous coats
which enhance the ability of the infective agent to survive outside the host. Alternatively,
rather unspecialized stages, such as the capsules, polyhedra or free particles of the viruses,
may be produced (Smith 1976). The more specialized of these viral stages can be very resistant
to fluctuations in physical parameters such as temperature and humidity.

As indicated by some of the entries in table 4, the tough, resistant outer coverings of many
infective stages enable them to persist in the external environment for long periods of time.
Certain microsporidian protozoan spores and viral polyhedra can survive for many years in
the soil or litter of grassland and forest habitats (Tinsley & Entwhistle 1974; Thompson &
Scott 1979; Henry & Oma 1974; Thomas et al. 1972). For example, David & Gardiner
(19674, b) showed that a granulosis virus of Pieris brassicae larvae was very stable in soil and
sand, and manifested little deterioration after two years. These authors also demonstrated that
the virus could not readily be washed out of the soil by heavy rainfall. Similar results were
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obtained by Jaques (1969) for a nuclear polyhedrosis virus of the cabbage looper, Trichoplusia
ni, which retained its infectivity after four years in field plots. Jaques (1964, 19674, b) showed
in general that insect baculoviruses persist in soil in inclusion bodies, which are crystalline,
proteinaceous and polyhedra-shaped; these appear to adhere to the surface of soil particles,
and so are prevented from being washed from the surface layers of the soil. One of the most
remarkable cases of virus persistence is reported by Thompson & Scott (1979), who suggest
that a nuclear polyhedrosis virus of the Douglas fir tussock moth, Orgyia pseudotsugata, once
incorporated in the surface soil of the forest, is subject to little vertical movement in the soil
and may remain active for up to 11 years.

TABLE 5. PRODUCTION OF INFECTIVE STAGES OF PATHOGENS

number of infective

parasite host stages per host, A reference
viruses.
nuclear-polyhedrosis virus Malacosoma spp. 1x10° Stairs (1972)
nuclear-polyhedrosis virus Orgyia pseudotsugata 1x 107 Thompson & Scott (1979)
protozoa (spores)
Vairimorpha necatrix Heliothis zea 1.7 x 1010 Fuxa & Brooks (1979)
Nosema heliothidis Heliothis zea 2 x 10° Cole (19%70)
Nosema locustae Melanoplus bivittatus 1x10° Henry (1971)
Mattesia grandis Anthonomus grandis 1.7 x 108 McLaughlin & Bell (19770)
Glugea gasti Anthonumus grandis 6.8 x 107 McLaughlin & Bell (1970)
Nosema pyrausta Ostrinia nubilalis 9 x 107 Raun ¢t al. (1960)

It is important to note, however, that, although the reported maximum lifespan of these
infective stages may be long, the expected lifespan of an individual stage will often be many
orders of magnitude less. Thus data presented by Thompson & Scott indicate an expected
lifespan for the nuclear-polyhedrosis virus of O. pseudotsugata of approximately 2-3 months in
the duff layer of soil of forests in the Cascade Mountains of North America (table 2 of Thompson
& Scott 1979), which is to be compared with the estimated maximum lifespan of 11 years.

In contrast to these comparatively long-lived infective agents of the insect baculoviruses and
microsporidians, many pathogens produce stages that are very short-lived in the external
habitat. For example, a non-inclusion virus of the European red mite, Panonychus ulmi, is very
unstable outside the host, and only remains infective for about one week (Putman 1970).
Similarly, as seen in table 4, some bacterial and fungal spores have short lifespans (Wilson
1971, 1972; Ignoffo et al. 1976).

(8) Rate of production of infective stages

We define A to be the rate at which an infected host produces infective stages of the parasite.
For many invertebrate species, an infected host does not release infective stages at a steady
rate, but rather releases /1 infective particles into the environment when it dies; this is essen-
tially equivalent to a host producing infective stages at a steady rate

A= A(a+b+7y) (58)

throughout the expected lifespan, 1/(c+ & +7), of the infection. In the absence of recoveries,
7 = 0 (which commonly is the case for microparasitic infections of invertebrates), this equivalence
formula reduces to A = A(a + ). The production rate, A, varies widely among species of patho-
gens. As documented in table 5, the nuclear-polyhedrosis viruses and microsporidians of insects
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often produce very large numbers of infective agents per infected host. The millions of baculovirus
inclusion bodies (polyhedra or granules) liberated on the death of an infected host may each
contain many virus particles (as for nuclear-polyhedrosis viruses) or a single particle (as for
granulosis viruses) (Tinsley 1979). The polyhedra of the nuclear-polyhedrosis viruses thus consti-
tute ‘packets’ of infective particles. The inclusion body, or polyhedron, serves to preserve the
infectivity of the virus in the external habitat.

(¢) Natural history of transmission

The free-living infective stages of microparasites employ a variety of pathways for their
passage from one host to the next. The infective stages may exit from an infected host through
the digestive tract (in the faeces), or through respiratory pores or reproductive canals (parti-
cularly important in transovum transmission). Pathogens that live in the body cavity of the
host often rely on the death and dissolution of the host for the release of the infective stages
(cf. equation (58)). Consumption of dead infected hosts by individuals of the same species
obviously constitutes an effective method of transmission. -

The consumption of infected hosts by scavengers and predators, particularly birds and small
mammals, can lead to dissemination of the infective stages over a wide area, provided they are
able to survive passage through the dispersing animal’s gut (as the infective stages of many
virus and protozoan infections of invertebrates can) (Tinsley 1979; Stairs 1972). For example,
the spores of the protozoans Nosema polyvora and Pleistophora schubergi pass through the alimentary
tracts of birds, Parus major, with little or no loss in virulence (Gunther 1959; Tanada 1964).
Entwistle et al. (1977) suggest that birds play a major role in the dispersal, and hence persistence,
of an endemic nuclear-polyhedrosis virus of the sawfly, Gilpinia hercyniae, in forest ecosystems.

(d) Host—parasite dynamics with free-living infective stages
We define the population of free-living infective stages of the parasite to be W (¢) at time .
The rate at which uninfected hosts acquire infection is assumed to be proportional to the
number of susceptible hosts, X, and to the number of infective stages, W; that is, the trans-
mission term AXY of the basic model A is replaced by a term vWX, where v is a proportionality
constant measuring the transmission efficiency (vW has the dimension 1/time). Thus equations
(12)—(14) are replaced by

dX/dt = a(X+Y)—bX—-vWX+vY, (59)
dY/dt = vWX—(a+b+7)7, (60)
dH/dt = rH—aY. (61)

As before, we may use any two of these three equations, along with the identity H=X+7Y.
It remains to close the system of equations with a description of the dynamical behaviour of W.
By our earlier definition, infective stages are produced from infected hosts at a net rate AY.
Free-living infective stages are lost upon being picked up by hosts (either uninfected or infected)
at a net rate vWH, or by mortality at an individual rate 4 (corresponding to a net death rate
uW). Thus the rate of change of the population of free-living infective stages is

dW/dt = AY — (u+vH) W. (62)

This set of equations constitutes model G, which is depicted schematically in figure 15. The
dynamics of this system is analysed in appendix F.
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F1cure 15. Schematic representation of the assumptions embodied in model G, where we take explicit account
of the free-living infective stages of the parasite. The model is defined more explicitly by equations (59)—
(62), and the various rate parameters are as listed in appendix A.

As usual, we begin by looking at the basic reproductive rate, R, of the parasite, which here is

A vH

k= (c+b+7) (,u+vH)' (63)
This relation may be understood in biological terms: throughout the lifespan of an infected
host individual (of average duration 1/(a+5+ 7)), infective stages are produced at a rate A;
of these infective stages, a fraction vH/(u +vH) are successfully transmitted to new hosts (vH),
as opposed to dying (u). It is immediately apparent that R is always less than unity, and the
infection cannot persist, unless '

A > (a+b+7y). (64)

Equivalently, for the special case when a total of A infective stages are released on the death
of the host, equation (58) can be used to rewrite equation (64) as

4 > 1. (65)

The general equation (64) or the special equation (65) is simply the trivial requirement that
each infected host must produce, on average, more than one infective stage. Once equation
(64) is satisfied, the threshold host density, Hy, follows by putting R = 1 in equation (63), to
give

y a+b+y
= (Rtesr o (69

A glance at tables 1 and 5 suggests that A is essentially always vastly greater than a+b+7y
for microparasitic infections of invertebrates; indeed, for the cases in table 5, 4 = A/(x+ b +7)
is typically of the order of 10¢ or more. Thus, not only are the inequalities of equations (64)
and (65) strongly fulfilled, but the term in square brackets in the denominator in equation
(66) is, to an excellent approximation, unity. We shall henceforward simplify the presentation
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by neglecting all terms of order (a+b+7)/A, relative to unity; the exact results are given in
appendix F. Furthermore, we may then define

B =vA/u, (67)
and express the threshold host density as

Hy = (a+b+7y)/8. (68)

This is identical with equation (10), except that the transmission parameter /8 is expressed in
more basic terms, involving the rates of production (A), death (x) and transmission (v) of
free-living infective stages. Note that large A and small # (long-lived infective stages) help to
keep the threshold host density relatively low.

 As in model A, the host population will grow exponentially (at the rate ) until it exceeds
H,, whereupon the disease is able to persist and will regulate the population provided that

A > ale+b+y)/(a—r) > 0. (69)
If
o >, (70)
equation (68) is essentially always fulfilled (unless « is improbably close to r) for the effectively
infinite values of A characteristic of microparasitic infections of invertebrates.
Unlike models A-F, the regulated state is not necessarily a stable equilibrium host population.
Two cases can be distinguished.
(1) There is a stable equilibrium if

(p+aD—r)(D—1)—(a+b+7y) > 0, (71)

where D is defined for notational convenience as D = (e + b +7)/(a —r). This stable equilibrium
value H* of the host population is

H* = (L)HT, (72)

o —

with Hy defined by equation (68). The equilibrium prevalence is y* = r/«. Thus the simple
expressions derived for model A, equations (17) and (18), remain true in this circumstance.
Equations (71) and (72) are for A effectively infinite, in the sense discussed above; exact results
are given in appendix F.

In short, a stable equilibrium is achieved if: the parasite pathogenicity, , exceeds the host
population’s intrinsic growth rate, 7 (equation (69)); the rate of production of infective stages,
A, is large (equation (69)); and equation (71) is satisfied. The last condition is not particularly
transparent, but equation (71) tends to be fulfilled provided that the infective stage is short-
lived (u large), and the pathogenicity, a, is not too much larger than r. These points are
summarized in figure 16, which shows the way in which dynamical behaviour depends on «
and A, for various values of # and r (and y = 0).

(ii) Conversely, if equation (68) is satisfied, but equation (71) is not, the regulated state
is a stable limit cycle. The variables X(¢), Y(¢), H(¢) and W (¢) oscillate in stable cycles, the
period, amplitude and overall shape of which are uniquely determined by the parameters of
the model. Equation (71) suggests that this circumstance is likely to arise when the infective
stage is long-lived (# small) and the pathogenicity very high (« large).

The important conclusion is that highly pathogenic microparasites producing very large numbers of long-
lived infective stages are likely to lead to non-seasonal cyclic changes in the abundance of their invertebrate
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Ficure 16. The four regimes of dynamical behaviour that can be exhibited by model G are here illustrated in
the A-o parameter space (A is the rate of production of infective stages per infected host, and & measures
the parasite pathogenicity). As discussed in the text, these four régimes are: the pathogen regulates its host
population to a stable equilibrium value (‘stable’); the pathogen regulates its host population to stable
cyclic oscillations (‘limit cycles’); the pathogen fails to regulate the host population, but persists within it
as it undergoes exponential growth (‘persistence’); and the pathogen cannot maintain itself within the
unregulated host population (‘extinction’). In (a) the other parameter values are r = 1.0 week—!, b = 1.0
week™1, y = 0 week™! and g = 0.02 week™!; the infective stages are long-lived. Figure (b) has the same
parameter values, except that the infective stages are short-lived, with now g = 14; (¢) and (d) are similar
to (a) and (b), respectively, except that here r = 3.0 week™1; this faster growth rate for the host population
diminishes the domain of A-a parameter space where limit cycles arise.

hosts and in the prevalence of infection. In the next section this conclusion is tested against available
data.

(iii) If equation (69) is violated (which, for large A, essentially means r > «), the parasite
is unable to regulate its host population, which grows exponentially. The parasite will, how-
ever, persist within the host population, asymptotically slowing its rate of exponential growth,
provided that

A—(a+b+y) > . (73)

Equation (73) (which is necessarily a weaker condition than equation (69)) differs from the
simpler equation (64) because the asymptotic rate of reproduction of the parasite must not
merely be positive but must exceed that of its host if the parasite is to persist within the expo-
nentially expanding host population. The condition equation (73) is, interestingly, identical
with that derived from models describing the dynamics of metazoan macroparasites with
direct life cycles, such as many nematodes, tapeworms and flukes (Anderson & May 1978;
May & Anderson 1978). Such inequalities accord with the observed fact that most micro-
parasites and macroparasites possess reproductive potentials much greater than those of
their hosts.

50 Vol. 291. B


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

484 R. M. ANDERSON AND R. M. MAY

(iv) Finally, if equation (73) is not satisfied the parasite cannot persist and the host popu-
lation grows exponentially at the disease-free rate 7.

These four basic regimes of dynamical behaviour depend on the interplay among the
ecological and epidemiological parameters a, 7, 4, A, b and . Figure 16 illustrates some of these
relations, as do figures 18 and 19.

12. INSECT POPULATION CYCLES INDUCED BY MICROPARASITIC INFECTIONS

Many viral and microsporidian pathogens of insects possess the characteristics of high
pathogenicity and very high rates of production of long-lived infective stages required to
generate the stable cycles discussed above.

3
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Ficure 17. Two examples of long-term pcriodic fluctuations of insect abundance: (a) population fluctuations
of the pine looper moth, Bupalis piniarus, in Germany (data from Varley (1949)) (b) population fluctuations
of the larch budmoth, Zeiraphera diniana, in the European Alps, as reflected in an index of the intensity of
damage to the larch stands (data from Baltensweiler (1964)).

Cyclic changes in the abundance of insect species have been reported in many temperate
forest regions in Europe and North America (Varley et al. 1973). Many of these forest insect
species are pests, causing economic damage to the standing crop of trees in years of high pest
abundance. Such insects have therefore been much studied by forest entomologists, and the
long-term records of population data are among the best that exist for any animal populations.
The striking feature of many of these studies is the regularity of cyclic changes in insect abun-
dance; some species have predictable population peaks every eight to ten years, while others
appear to cycle on shorter or longer time scales (Klomp 1966 ; Baltensweiler 1964; Auer 1968;
Baltensweiler et al. 1977; Schwerdtfeger 1941; Varley 1949). Two examples of long-term cycles
are displayed in figure 17 (with the data extending in one over 60 years, and in the other over
100 years); see also figure 21.
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There has been much unresolved speculation about the mechanisms responsible for these
regular peaks in insect abundance (Varley et al. 1973). Some authors have suggested that the
cycles are driven by specific parasitoids, or by time lags in the action of density-dependent
effects (such as regeneration of food resources, or the abundance of predators) (Klomp 1966;
Varley 1949; Ludwig et al. 1978; May 1974). Others have noted that epidemic outbreaks of
viral or protozoan parasites are often observed in years of peak pest abundance (see table 6),
and have argued that such pathogens are important in causing dramatic reductions in host
abundance (Bird & Whalen 1954; Prebble & Graham 1945; Morris 1963 ; Thompson & Scott
1979; Entwistle et al. 1977; Stairs 1972; Lloyd & Dybas 19664, b).

TaABLE 6. EPIDEMICS OF VIRUS DISEASE IN HIGH DENSITY POPULATION OF ARTHROPODS

percentage
host locality type of virus infection reference
Panonychus citri California non-occluded 25 Shaw & Beavers (1970)
(citrus red mite)
Chironomus plamous Wisconsin iridescent 40 Stolz et al. (1968)
(midge)
Chironomous luridus Germany insect-pox 20-40 Huger et al. (19770)
(midge) :
Trichoplusia ni California cytoplasmic polyhedrosis 40 Bailey (1973)
(cabbage looper)
Malacosoma alpicda Switzerland granulosis 53 Benz (1962)
(tent caterpillar)
Orgyia pseudotsugata Oregon nuclear-polyhedrosis 50 Thompson & Scott (1979)
(tussock moth)
Porthetria dispar Connecticut nuclear-polyhedrosis 80 Doane (1969)
(gypsy moth)
Neodiprion sertifer Canada nuclear-polyhedrosis 20-90 Bird (1961)
(sawfly)
Diprion hercyniae Canada nuclear-polyhedrosis 60 Bird & Elgee (1957)
(sawfly)
Wiseana spp. New Zealand nuclear-polyhedrosis 80 Crawford & Kalmakoff (1977)
(Lepidoptera)
Orcyctes rhinoceros western Samoa  baculovirus 60 Zelazny (1977)

(rhinoceros beetle)

Table 7 summarizes the average periods of cycles in the abundance of particular species of
forest insect pests. The table also lists some pathogens that have been observed in these insect
populations. We now argue, in detail, that these cycles (with periods of the observed magnitudes)
are produced by host—parasite interactions of the kind studied in model G. To this end, we
give a seriatim discussion of the four main parameters, x4, o, A and r. _

First, the longevity, 1/u, of viral infective stages, be they granules, particles or polyhedra,
depends on the physical environment. Jaques (1977) and others found that sunlight, most
probably the ultraviolet part of the spectrum, is the most important factor determining loss
of infectivity of insect baculoviruses in the field; baculoviruses, of either the nuclear-poly-
hedrosis or granulosis type, are principally parasites of lepidoptera, hymenoptera and diptera
(Tinsley 1979). Temperature and humidity also are important, with baculoviruses retaining
their infectivity at moderate to low temperatures, provided that the humidity is not too low
(Tinsley 1979; Jaques 1975). Thus the soil environment of temperate forest habitats appears
ideally suited for the long-term survival of viral infective agents. As indicated in table 4,
maximum lifespans of nuclear-polyhedrosis viral particles range up to 11 years in natural

50-2
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forest environments (Thompson & Scott 1979; Thomas et al. 1972), although, as discussed in
§ 11, expected lifespans are usually much shorter.

Secondly, as shown in table 1 (and discussed by Stairs 1972; Tinsley 1979; Thompson &
Scott 1979; Morris 1963), baculoviruses and microsporidians of insects are in general extremely
pathogenic, and cause very high rates of host mortality (« large). Infected insects have little
or no chance of recovery from infection (y = 0). Moreover, as can be seen from table 2,
many of these pathogens also reduce the fecundity of infected hosts, which further increases
their effective pathogenicity in the manner discussed in § 6 (model B).

TABLE 7. CYCLIC VARIATIONS IN THE ABUNDANCE OF FOREST INSECT SPECIES

period of
cycles in
population
abundance
host insect species locality year pathogen reference
Orgyia pseudotsugata North America 7-10 nuclear-polyhedrosis Thompson & Scott (1979)
(Douglas-fir tossuck moth) virus :
Acleris variana eastern Canada 10-15 nuclear-polyhedrosis  Prebble & Graham (1945);
(black-headed budworm) virus Miller (1966)
Bupalus piniarius Europe 5-8 nuclear-polyhedrosis Klomp (1966)
(pine looper) virus ,
Zeiraphera diniana Europe 9-10 granulosis virus Auer (1968);
(larch budmoth) Baltensweiler (1964)
Diprion hercyniae North America 8 nuclear-polyhedrosis  Bird & Elgee (1957)
(spruce sawfly) virus
Malacosoma disstria North America 8-12 nuclear-polyhedrosis Hodson (1941);
(tent caterpillar) virus; microsporidian Thomson (1960)

protozoan

TABLE 8. ESTIMATES OF THE NATURAL INTRINSIC GROWTH RATE, 7,
OF SOME FOREST INSECT SPECIES

approximate r
(per capita)

host year—! reference
Bupalus piniarius (pine looper) 0.8-1.2 Klomp (1966)
Zeiraphera diniana (larch budmoth) 1.0 ~ Auer (1968)
Acleris variana (black-headed budworm) 1.5 Morris (1959)
Zeiraphera griseana (grey larch budmoth) 1.0-1.2 Baltensweiler (1964)
Choristoneura fumiferana (spruce budworm) 1.0 Morris (1963)
Diprion hercyniae (spruce sawfly) 1.0 Bird & Elgee (1957)

Thirdly, we see from table 5 that the number, 4, of infective stages released into the environ-
ment upon the death of an infected host is typically many millions for both microsporidians
and viruses. As discussed in § 11, this means that the effective rate of production, A, of infective
stages is not merely very large in relation to other rate parameters, but is for many purposes
effectively infinite.

Fourthly, many of the forest insect pests under consideration are univoltine (one generation
per year), and characteristically exhibit relatively low rates of annual population growth.
The rough estimates summarized in table 8 suggest the intrinsic growth rate, 7, of individuals
of such insect species is typically around unity (in units of reciprocal years (year™)).

In short, for many insect-host pathogen associations in temperate forests we have the con-
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Ficure 18. For model G, these figures illustrate the domain of 7—g parameter space in which the parasite regulates
its host population at a stable equilibrium value (unhatched region), and in which host and parasite popu-
lations exhibit stable limit cycle behaviour (hatched region); r is the intrinsic growth rate of the host and g
the death rate of infective stages (1/p is thus the expected lifespan of infective stages). The other relevant
rate parameters have the values b = 3.3 year—!,y = 0 year~!, A = 108 year—! (which is to say 4 is effectively
infinite). The parasite pathogenicity « takes the values: (a) 9.0 year-1; (b) 7.0 year—1; and (c) 5.0 year—1, A
discussed in the text, cycles are more likely to arise for relatively small values of 7 and g, and relatively large
values of .

FiGure 19. These figures are similar to those in figure 18, except that now we have extended model G to
include the effects of parasite-induced decrease in the reproductive rate of infected hosts. Thus we show the
domain of r—u parameter space corresponding to a stable equilibrium and to stable limit cycles for a host—
parasite system described by a combination of models G and B (the boundary between the two domains in
figure (19) is now given by equation (34) of appendix F; the boundary in figure (18) is given by the simpler
equation (71) of § 11). In (a) the reproductive rate of infected hosts is depressed by 109, relative to that of
uninfected ones, f = 0.1; in (b) f = 0.3; and in (¢) f = 0.5. The other relevant rate parameters have the
values: & = 9.0 year'; b = 3.3 year1; y = 0 year—!; A = 108 year-L. As discussed in the text, figure (19)
shows that depression of the birth rate of infected hosts (increasing f) makes stable limit cycle behaviour
more likely.

catenation of large a, small g, relatively small r and very large A (tables 1, 4, 8, 5) that produces
stable limit cycles. This point is illustrated explicitly in figure 18, which shows the domain of
cyclic (rather than stable equilibrium) behaviour as a function of x and r, for various «, with
all parameters having values in the range appropriate to forest insects. Figure 19 shows that
the domain of stable cyclic behaviour is further enlarged if the pathogen also reduces the
fecundity of infected hosts (the fusion of models B and G underlying figure 19 is outlined in
appendix F). The period of the stable limit cycles (obtained by numerical studies of the
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2.4

6 12

Ficure 20. As discussed more fully in the text, this figure shows the period of the cycles in host abundance and
prevalence of infection, as a function of the parameters r and £ of model G; the contour lines are for
particular periods (labelled according to the period, in years) from 3 to 40 years. In the shaded region,
there is a stable equilibrium point. Rate parameters: & = 9.0 year~; b = 3.3 year~!; y = 0 year!;
A = 108 year~! (i.e. A is effectively infinite).

nonlinear set of differential equations) is shown as a function of 4 and 7, for a typical value of
a, in figure 20.

We now analyse one example, namely the European larch budmoth, in detail. First, how-
ever, we bring the equations (59)—(62) into dimensionless form, to make quite clear which
parameters are, and which are not, involved in fitting our theory to the data. As has been
discussed above, in connection with table 5, and is justified more formally in appendix F, we
take the rate of production of infective stages A to be much larger than other rate processes
(4 > 1in equations (58), (64), (65)). We then define the dimensionless variables X' = X/ H,,
Y’ = Y/Hy, H = H/Hy and W’ = uW/AHy, with Hy itself defined by equations (67) and
(68) as Hy = u(e+b+7)/Av. The closed system of equations (60)-(62) then becomes

dY'/dt = (a+b+y) [W(H - Y)-1'], (74)
dH'/dt = tH' —aY, (75)
AW’ jde = p(Y' - W). (76)

It is now clear that the dynamical behaviour of these equations (the shape and period of the
cycles) depends only on the rate parameters 4, o, r and the combination a + b +7. The pre-
valence (y = Y/H), being intrinsically dimensionless, also depends only on these parameters.
On the other hand, the absolute scale of the population variables X, ¥ and H involves H,
and thence the additional parameter combination vA. The parameters u, a, 7, b and y are
more or less determinable, but estimation of A (beyond the fact it is very large) is difficult,
and of v hopeless.

Figure 21 shows data for the abundance of the larch budmoth, Zeiraphera diniana, in the
European Alps, and for the prevalence of infection with a granulosis virus, over an interval of
20 years (Auer 1968). 7

Figure 22 shows the same quantities, namely budmoth abundance and prevalence of in-
fection, as calculated from equations (74)—(76) with values of the parameters «, x, r, b and y
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Ficure 21. The solid line shows observed changes in the abundance of the larch budmoth, Zeiraphera diniana,
in the European Alps, and the dashed line shows the percentage prevalence of infection with a granulosis
virus in this population (data from Auer (1968)). This figure and figure 175 show that cycles in the abun-
dance of this forest insect occur approximately every 9-10 years.
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Ficure 22. This figure depicts numerical solution of model G, equations (59)—~(62), using parameter values that
crudely approximate those for the larch budmoth-granulosis virus interaction illustrated in figure 21. We
specifically choose r & 1.0 year—1, b = 3.3 year~, y = 0 year-!, g & 3.0 year], & & 14 year~!, A = 10°
year~1 (A efectively infinite) ; the transmission efficiency v is arbitrarily set at 10-1° year-1. These choices, and
the associated references, are discussed in the text. (a)—(¢) The change in abundance of susceptible hosts,
X(t), infected hosts, Y (¢), and free-living infective stages of the parasite, W (t), respectively (all plotted as
logarithms to base 10), as functions of time ¢ (in years). Figure (d) likewise shows total host abundance,
H(t) (plotted logarithmically) as a function of time; the dashed horizontal line indicates the threshold host
density for maintenance of the parasite within the host population. The prevalence of infection, y(t) (as
a percentage), within the host population is also shown by dashed lines in (d).

Ficure 23. Idealized representation of the relation between the threshold host density, Hy, for maintenance of
the parasite (the dashed horizontal lines) and cyclic changes in host abundance, H(t) (the vertical axis)
As discussed in the text, (a) illustrates the kind of pattern likely to arise from seasonal effects (with host
abundance below the threshold level for around 6 months or so); (b) illustrates the situation likely to arise
when there are discrete non-overlapping generations of the host population (with host abundance typically
below threshold for the greater part of one year); and (¢) illustrates the kind of pattern generated by long-
term limit cycles in host abundance (where host abundance can be below threshold levels for several years.)
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estimated independently of the population data of figure 21. Specifically, we use information
given by Baltensweiler et al. (1977), Baltensweiler (1964), Benz (1962) and Auer (1968) (see
tables 1, 4, 8) to assign the values: 7 ~ 1 year~! (a necessarily rough estimate); 4 ~ 3.3 year!
(1/b ca. 3% months); y = 0 year—! (negligible recovery); a ~ 14 year~!; 4 ~ 3.0 year~! (1/u
around 3—4 months). The cycles in abundance of susceptibles X, infecteds ¥, and infective stages
of the parasite W are also shown in figure 22. The host population H is plotted on a logarithmic
scale; thus the undetermined scaling parameter Hy; only enters in setting the absolute level
of H, and does not enter into the logarithmically plotted amplitude (we set the absolute scale
by putting A = 10° and arbitrarily choosing » = 10-19),

The agreement between the data in figure 21 and theoretical results in figure 22, with respect
to the period and to the shape and magnitude of the oscillations in budmoth population and
prevalence of virus infection, is encouraging. It is to be emphasized that no adjustable para-
meters are involved in this fit. ’

Unfortunately, we know of no other examples where all the important parameters in our
host—parasite model can be estimated independently of the data on the population cycle itself.
Figure 24a gives data for the spruce sawfly, Diprion hercyniae, and a virus disease that has been
argued to be regulating it (Bird & Elgee 1957; Southwood 1977); we can fit this data with
our model, but not with parameters estimated independently from the data being fitted.

Several general features of population cycles driven by host-parasite associations are illus-
trated by figure 22. First, the peak in prevalence of the infection within the host population
occurs shortly after the peak in host abundance. Secondly, the host population falls below the
threshold value, Hy, during part of the cycle; the infection survives primarily by virtue of its
relatively long-lived transmission stages. Thirdly, when H is below Hy the prevalence declines
effectively to zero, so that the disease seems to have disappeared from its host population;
it is a mistake to think that disappearance of the disease, or epidemic reappearance, is inconsistent with the
pathogen driving the host population cycle. Fourthly, the cyclic patterns of host abundance (figure
22d) tend to be characterized by a slow rise and a rapid fall, whereas the cycles in the number
of infected hosts (figure 224) and in the population of free-living infective stages (figure 22¢)
tend to have a quick rise and a slow decline.

If the fluctuations in host and parasite abundance are very severe, stochastic effects can
produce extinction of the host of or the pathogen, complicating our story. This is especially
liable to happen when r is relatively small, so that the system cycles with a long period and
the density of free-living infective stages can fall to low levels.

In general, figures 18-20 show that interactions between invertebrate hosts and their micro-
parasites are likely to result in population cycles. Such cycles may have periods shorter than
one year if the host annually produces many generations (relatively large r), or the periods
may be several decades if r and g are both small; typical vital rates, however, suggest periods
in the range 5-12 years. Of course, there are other factors, some of which are discussed in the
next section, that can lead to cycles in host—parasite associations. We suggest, however, that
the simple mechanism discussed above is sufficient to account at least for most long-term
population cycles in forest insects.
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13. PERSISTENCE OF MICROPARASITES IN FLUCTUATING HOST POPULATIONS

Cyclic or erratic variation in the abundance of invertebrate hosts can arise in many ways.
Seasonal changes in temperature, humidity or other environmental factors may cause changes
in birth rates, natural death rates, or in the transmission efficiency of a pathogen that influences
host dynamics. The life cycle of many arthropods and other invertebrates consists of discrete,
non-overlapping generations, and larval or adult individuals may only appear during a brief
part of the year (the adults of cicadas with periods 13 and 17 years are in extreme case; Lloyd
& Dybas 19664, ). Alternatively, limit cycles with long or short periods may be produced by
the interaction between the host population and a microparasite (as discussed above), a
predator (May 1972, 1974, 1977; Hassell 1976, 1979; Gilpin 1975), food supplies (Caughley 1976),
or, more generally, by time lags in regulatory mechanisms (May 1974).

Regardless of the mechanism, such changes in host abundance can create problems for the
pathogen if the host density H fluctuates below the threshold level Hy necessary for pathogen
persistence. As inverbetrate populations are characterized by a level of fluctuation higher than
that for vertebrates (Southwood 1976), these problems are more acute for directly transmitted
parasites with invertebrate hosts. Figure 23 gives an idealized representation of the threshold
density, Hy, in host populations undergoing cyclic variations caused by: (@) seasonal effects;
(b) discrete, non-overlapping generations; and (¢) limit cycles with long periods.

Microparasites of invertebrates appear to have evolved three basic mechanisms to cope with
the problems created by wide fluctuations in host abundance. Each of these mechanisms —
vertical transmission, occult infection, free-living infective stages — is now discussed in the light
of the analysis in §§ 4-12.

(a) Vertical transmission

As was seen in model C, vertical transmission lowers the threshold host density Hy (equation
(81)), facilitating the persistence of pathogens in relatively low density host populations. Both
transovarial and transovum forms of vertical transmission are widely observed among the
pathogens of invertebrate species, and they undoubtedly help pathogens to persist with host
populations that undergo large seasonal fluctuations.

In particular, such transmission mechanisms help to prevent the extinction of the parasite
in host populations with discrete, non-overlapping generations, where replication and popu-
lation growth of the pathogen within an individual host is restricted to specific developmental
stages in the host’s life cycle (e.g. specific instars or solely the adult stage) (see Tanada 1964;
Stairs 1972; Smith 1976; Tinsley 1979). For instance, Clark (1956) suggests that transovarial
transmission is important in enabling virus infections of tent caterpillars, Malacosoma fragile, to
persist through the period of 9-10 months during which no susceptible stages of the insect
are present.

(b) Occult or non-apparent infections

The occurrence of occult, latent or non-apparent infection within invertebrate populations
has been much discussed in recent years. The phenomenon has been variously defined in
different areas of invertebrate pathology; one of the simplest definitions is by Tanada (1964),
who argues that the presence of an occult infection can only be unequivocally demonstrated
by placing apparently healthy hosts under stress, and observing the increase in mortality or
decrease in reproduction resulting from the activation of a previously quiescient microparasitic
infection. Such occult or non-apparent infections are common among insect-virus associations.

51 Vol. 291. B
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For example, latent infection with cytoplasmic polyhedrosis viruses occur in bees, Bombus morz,
in tent caterpillars, Malacosoma sp., in winter moths, Operophtera brumata, in pine loopers, Bupalis
piniarius, and in the small white butterfly, Pieris rapae (Smith 1976). Non-inclusion baculoviruses,
such as those causing acute or chronic bee paralysis, occur commonly in apparently healthy
honey bees and bumble bees (Bailey et al. 1963, 1964).

These occult viral infections of insects can be activated by various stresses, including those
associated with physical conditions (such as temperature or humidity), food quantity and
quality, and infection of the host by more than one species of parasite or superinfection by one
species of parasite (Bergold 1958; Steinhaus 1958; Grace 1962; Tanada 1964; Smith 1976).
The underlying mechanisms are, in general, poorly understood. Viral replication within
poikilothermic hosts is undoubtedly affected by temperature and by the associated metabolic
rate of the host; the population growth of microparasites within the host body will be markedly
slower during periods of aestivation or hibernation. Genetically determined variability in the
susceptibility of hosts to infection may also be important, with some host individuals entirely
overcoming the invading pathogens, while others constrain population growth to such a low
level that the infection seems to be latent or non-apparent. ’

In terms of the overall population biology of the host-parasite association, quiescent or
occult infections that induce no change in the mortality or reproduction of infected hosts may
enable the parasite to persist during periods of low host density. In particular, in seasonal
environments, low temperatures during the winter months may inhibit viral replication within
a host, thus enabling the overwintering host and the pathogen to survive. In general, however,
little is yet understood about the population consequences of occult or non-apparent infections.

(¢) Long-lived infective stages: general

Free-living infective stages, with long lifespans, clearly represent a third method whereby a
pathogen can remain endemic in a host population that fluctuates widely on either a seasonal
or a longer-term basis. In particular, as we saw in model G (equation (66) or (67)), the
threshold host density for maintenance of the infection decreases as the average lifespan of
infective stages lengthens (i.e. as u decreases). More generally, the free-living infective stages
enable the parasite population to persist outside the host during the troughs, when host abun-
dance is below the threshold density required for maintenance of the infection within the host
population; the overall parasite population is restocked during the episodes of host abundance.

This strategy for parasite survival in a widely fluctuating host population requires that the
maximum lifespan of the free-living infective stages exceed the maximum length of the intervals
during which the host density is below threshold. As we have seen, in table 4, the maximum
lifespans of the infective stages can indeed be very long.

At least three circumstances can be distinguished in discussing the role of free-living infective
stages in maintaining infections within fluctuating host populations. The first (where the host—
parasite interaction itself produces population cycles of periods of 5-12 years or longer) has
already been discussed in detail in §§ 11 and 12. The second (where seasonal changes in rate
processes drive host population cycles) and the third (host population cycles driven by prey-
predator interactions) are discussed below.
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(d) Long-lived infective stages: seasonal changes in rate processes

In temperate habitats, most invertebrate species exhibit seasonal changes in population
density (Fretwell 1972; Krebs 1978). Often the prevalence of microparasitic infection also
changes seasonally, presumably in response to the varying host abundance. For example,
Beesley (1977) reported seasonal changes in the abundance of larval leatherjackets, Tipula
paludosa, and in the prevalence of infection with a coccidian pathogen, Raajeyna nannyla (figure
245); the peak in pathogen prevalence appears to occur one to two months after the peak in
host abundance. In this example, the protozoan parasite produces infective stages (oocysts)
that are relatively long-lived in the damp regions that the hosts inhabit (Beesley 1977, 1978).
These stages are thus well suited to surviving through the winter months, when host density
is very low.

8 - 80 80

prevalence (%)

number of larvae per sample

0 0 0
1944 1949 1954 ondj fmamjjasond jfmam
year 1973 1974 1975
month and year

Ficure 24. Two examples of observed fluctuations in host abundance and in the prevalence of infection. (a)
Long-term fluctuations in the abundance of the spruce sawfly, Diprion hercyniae, in Ganada and in the pre-
valence of infection with a virus (data from Bird & Elgee (1957)). (b) Seasonal changes in the abundance of
an arthropod, Tipula paludosa, in England, and in the prevalence of infection with a protozoan parasite,
Rasajeyna nannyla (data from Beesley (19%77)). The features of these figures are discussed in the text. In both
graphs the solid line denotes insect abundance and the dashed line disease prevalence.

A more detailed understanding of the interplay between seasonal changes in host abundance
and parasite persistence can be gained by modifying model G to incorporate an annual
periodicity in the reproduction rate of the host. That is, we keep equations (60), (61) and (62)
for Y(¢), H(t) and W(t), respectively, but we replace the constant per capita growth rate r of
the host population in equation (61) by the time-dependent function r(¢):

r(t) = [A+Bisin [2n(t—7)] + 1] = b. (77)

Here ¢ is measured in years (corresponding to r(¢) having a one-year period); 7 determines
the phase of the seasonal changes in 7 (r has its midpoint value in the months corresponding to
7 = 0); and 4 and B are coefficients definining the amplitude of the oscillations in the birth
rate. This periodic behaviour of 7(¢) is illustrated in figure 254. All the other rate parameters
in equations (60)—(62) remain constant.

A numerical solution of this system of differential equations, for a particular set of parameter
values, gives the stably periodic patterns of dynamical behaviour depicted in figure 255. (If
r(t) in equation (77) is replaced by its average value, then this particular set of parameter
values corresponds to the infection regulating its host population to a stable equilibrium value;
the cycles in figure 2556 are driven by seasonality in equation (77), not by host—parasite
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interaction.) If the pathogen were not present, the host population would undergo exponential
growth.

Several general points are illustrated by figure 255, and deserve emphasis. First, seasonal
cycles in host abundance generate seasonal cycles in the prevalence of infection. Secondly,
the peak prevalence is attained somewhat after the peak in host abundance. This feature of
the abstract figure 255 is in accord with the data exhibited in figure 244, b. Thirdly, the
pathogen is able to regulate host population growth, even though r exceeds a (violating the
requirement & > r (equation (70)) of model G) during certain months of the year (see figure
254). Fourthly, the pathogen is able to persist despite the host density falling below the threshold
value, Hy, for more than half the year; see figure 255. In this example, the infective stages
have a constant death rate corresponding to an average lifespan of about two weeks, yet the
infection is maintained over the eight-month interval when H < H; by virtue of the very
large numbers of infective stages prodcued at the peak times (a few of which will, by chance,
survive as long as the maximum possible lifespan exceeds eight months). The example illustrates
the importance of free-living infective stages in the maintenance of disease in seasonal environ-
ments, even when the average lifespan of the infective stages is relatively short.

9
(a)

Ig H(z)

r(t)/year™t

-1

prevalence (%)
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month time[year

Ficure 25. This figure illustrates effects that can arise from seasonal changes in host abundance. (a) A host
population in which the intrinsic growth rate per individual, 7(¢), changes seasonally, as described by
equation (77), with the explicit parameter values 4 = 0.1 year-!, B = 3.4 year1, b = 1.0 year~!, and
7 = 1 month. As discussed in the text, the upper dashed line denotes r = & (above which level the disease
cannot regulate the host population), and the lower dashed line denotes r = 0.(below which the disease-free
population decreases exponentially). (b)) The consequent dynamical behaviour of the host and pathogen
populations, as described by model G with a seasonally varying (¢), and with @ = 5.0 year—, 4 = 2.0 year™!,
v = 0 year™}, A = 200 year~! and v = 10~® year-1. The solid curve represents the host abundance, H(t),
which is below the threshold value, H, (denoted by the dashed horizontal line), for part of each year; the
dashed curve represents the prevalence of infection (expressed as a percentage).

The cycles shown in figure 255 are relatively simple. Seasonal changes in the population
growth rates and other parameters in equations (60)—(62) are capable of producing much more
complex dynamical behaviour.

For instance, if the average rate of host reproduction is relatively low and the infective
stages are relatively long-lived and produced in large numbers, seasonality can induce non-
seasonal cycles in the prevalence of infection, with periods of two or more years. An example
of such a stable cycle is given in figure 26. The parameters here are such that, if 7(¢) is replaced
by its average value, the infection regulates the host population to a stable equilibrium point.
The biological explanation of the dynamical behaviour illustrated in figure 26 lies in the inter-
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play between the (constant) threshold host density, Hy, for the disease to take hold (R > 1),
and the tendency toward seasonal variation in H(t). In this figure, we see an epidemic occurring
after H(¢) rises above Hy. This outbreak of disease causes a dramatic crash in the host popu-
lation, which carries the prevalence of the infection back to low levels. The host population
now grows relatively slowly, with annual oscillations imposed on exponential growth, and it
takes two years before H(¢) again exceeds Hy, precipitating the next epidemic. The rate con-
stants can clearly be adjusted to produce stable cycles in the outbreak of disease with periods

of three or more years.

N [\
= 4

= 100 38
m '\ '\ é
29 P\ I\ 8
\ 1\ &
o | \ 1 °
I ' s
L | ] L Pal| 0 L
0 1 2 3 4 [o”)

time[year

Ficure 26. This figure is similar to figure 25, showing the dynamical behaviour of host and pathogen populations
when there is seasonal variation in the intrinsic growth rate of the host population. The parameters here are
b = 3.0 year!, @ = 4.0 yearl, p = 3.0 year!, vy = 0 year~}, A = 10° year~%, v = 10~ year~; 4, B and
7 are as for figure 25. The ‘outbreaks’ of disease, as measured by prevalence within the host population,
here have a 2 year period, as discussed further in the text.
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Ficure 27. This figure is also similar to figure 25, with all parameter values the same as in figure 25 except that
here & = 12.0 year-1. This relatively high pathogenicity, coupled with the relatively high growth rate of
the host population, results in host abundance falling quickly once Hy (horizontal dotted line) is exceeded,
yet subsequently rising again quickly, to give two ‘outbreaks’ of disease in each year. For a fuller discussion,
see the text.

Alternatively, the combination of seasonality with relatively high values of the average value
of r and very high pathogenicity (« very large) can lead to cycles with periods of less than one
year. Figure 27 gives a numerical example. Here, there is an epidemic early in the year, once
seasonal increase in host reproduction takes the population above Hy. The resultant effects of
disease cause a rapid fall in host density, and subsequently in prevalence. But this fast-growing
population recovers quickly enough to climb back above Hy for a second time in the same year,
thus triggering a second epidemic. _

In short, annual periodicity in the growth rate of the host population can interact with the
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effects of a pathogen, to produce stable cycles in the prevalence of infection, with periods
greater than, equal to, or less than one year. All this is in the circumstance when the parasite
would regulate its host population to a stable equilibrium point if 7(#) were replaced by its
average value (i.e. in the absence of seasonality). If, however, the rate parameters have values
such that the host-parasite association is intrinsically cyclic, as discussed in §§ 11 and 12,
the additional complications attendant upon seasonality can lead to extraordinarily complex
dynamical behaviour.

Motivated by evidence for epidemics of measles in New York city with a two-year period,
Dietz, Yorke and others (London & Yorke 1973 ; Yorke & London 1973 ; Dietz 1976 ; Grossman
et al. 1977; Yorke et al. 1979) have recently shown that annual periodicity in transmission rates
can produce non-seasonal cycles in prevalence. Their work employs conventional epidemio-
logical models (simpler than ours in having the total host population assumed constant; more
complicated in having a class of immune hosts). The non-seasonal patterns discussed above
are broadly related to those found by the above workers, and this area is evidently a rich one,
deserving further exploration. ‘

(e) Long-lived infective stages: extrinsic cycles

Interactions with long-lived predators, or with food supplies that regenerate slowly, can
cause host populations to exhibit stable cycles with long periods (May 1974, 1976). The cycles
of 30-40 years in the Canadian spruce budworm have, for example, been analysed in this
light (Ludwig ef al. 1978). Such intrinsic cycles in host abundance can lead to long-period
cycling in the prevalence of parasitic infections, even if the parasites have little or no effect on
the population dynamics of the host.

Such host populations are likely to spend long times at densities below the threshold necessary
for disease maintenance. Thus, again, the parasite will need to produce large numbers of long-
lived infective stages while its prevalence is high, if it is to persist in the system (but necessarily
outside the host population for significant periods of time). Many parasites of invertebrates do
this. Stairs (1972), for example, reports that an epidemic of a nuclear-polyhedrosis virus in
North American tent caterpillars, Malacosoma sp., can result in an increase by a factor of 1010
in virus polyhedra in forest environments, within a span of 20 days.

For many species of arthropods inhabiting forests or pastures, populations of viral and proto-
zoan parasites tend to exhibit epidemic outbreaks when host density is high (table 6; see also:
Stairs 1972; Tanada & Omi 1974; Thompson & Scott 1979; Tinsley 1979). This observation
has occasionally prompted the suggestion that transmission efficiency is enhanced by high
density (Bailey 1973; Stairs 1972). We wish to stress that such a correlation between high
abundance of hosts and high prevalence of disease is exactly as expected on threshold con-
siderations; there is no dynamical reason (nor, to our knowledge, any experimental evidence)
to suggest that the individual rate of transmission, the f or v of our models, is density-dependent.

14, MICROPARASITES IN THE BIOLOGICAL CONTROL OF PESTS

Much interest currently centres on the use of viruses, bacteria and protozoans as agents in
the control of invertebrate pest species (Tinsley 1979; Anderson 19794, b; Bailey 1973 ; Burges
& Hussey 1971; Henry 1971; Huffaker 1974; DeBach 1974; Bucher 1961 ; Bird 1953). Baculo-
viruses, in particular, appear to have great promise in the control of certain insect species,
such as the forest pests listed in table 7. For example, a nuclear-polyhedrosis virus, sprayed
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from the air in an oil-bentonite suspension, has proved very effective in controlling sawfly
outbreaks in forest habitats, both in Europe and in North America (MclIntyre & Dutky 1961;
Smirnoff et al. 1962; Bird 1953, 1961; Bird & Whalen 1954; Gershenzon 1969).

What are the main characteristics required of a pathogen if it is to be able to control a
given pest species? In what quantities need the pathogen be introduced? Our models for the
dynamics of host—parasite associations give some insight into these questions.

Setting aside such complications as vertical transmission, reduction of reproduction in in-
fected hosts and latency (all of which can easily be added if needed, but which complicate the
discussion), we modify model G by having the biological control program introduce infective
stages of the pathogen into the habitat, at a constant rate, 4. Equations (60) and (61) for the
dynamics of Y(¢) and H(t) remain as before, and equation (62) for W (¢) becomes

AW/dt = A+AY — (u+7H) W. (78)

The condition that must be satisfied if the disease is to regulate host population growth is,
as before, equation (69). As discussed earlier, for the large values of A that are essentially
always found (table 5), this control condition boils down to a > r; the disease-induced mor-
tality rate must exceed the disease-free growth rate of the host population. Given that this is
so, the pathogen will eradicate the host species provided that it is introduced at a rate, 4, in
excess of a critical value 4e:

_pr(a+b+y)

4> de = =0 (79)

That is, if 4 > A, the system settles to a stable equilibrium with H* = 0, Y* = 0 (host
population. extinguished) and W* = A4/u (population of infective stages in equilibrium be-
tween introductions and deaths). If the introduction rate 4 is not large enough to satisfy
equation (79), the pathogen regulates the host population, either to a stable equilibrium or
in stable cycles, but does not eliminate it. These results are established in appendix G.

Such control efforts are more likely to be successful if they require relatively low rates of
introduction of the pathogen. From equation (79), we see that this means parasites that are
highly pathogenic (a large), are long-lived (# small), and have high transmission efficiency
(v large). In accord with commonsense, both equation (79) and the overriding constraint
o > r state that pest species with high population growth rates (large r) are relatively difficult
to control. _

A quantitative estimate of the critical introduction rate, 4., is made hard by the difficulty
in estimating v. The quantity 4. can, however, be re-expressed as

Ao = AYE. (80)

Here Y§ is the equilibrium population of infected hosts, and AY§ the equilibrium net rate of
production of infective stages by infected hosts, in a natural system where 4 = 0. Thus, if
we are using a pathogen found in natural systems and believed to have & > 7, we have only
to introduce infective stages at a net rate in excess of the rate at which they are produced by
the pristine host—parasite association, to eradicate the host population. It is plausible that this
critical rate can be estimated, and attained, for some of the baculoviruses listed in table 7.
Our simple dynamical models thus suggest that pathogens can be used to control certain
pest species having low to moderate 7 values. One interesting set of possibilities are the
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baculoviruses that already infect many forest pest populations (table 7) ; their regulatory impact
appears to be such that it only requires a boost for eradication to be achieved.

Some cautionary notes must, however, be sounded.

First, our models make no mention of spatial heterogeneity, which is crucial in many multi-
species situations. In particular, our analysis of the possibility of eradication has ignored immi-
gration of pests into the population from other areas.

Secondly, numerical studies show that the stable equilibrium state with hosts eliminated
is only attained by keeping 4 > A, for many years. Even then, constant surveillance and
reintroduction of infective stages are needed to prevent resurgence of the pest species; the
H* = 0 state is only stable as long as 4 > A..

Finally, population dynamics is always confounded by population genetics. Clearly, the
pathogen will exert a strong selective pressure on the pest population, selecting for individuals
with reduced susceptibility to infection. These problems are examined in the next section.

15. EVOLUTIONARY TRENDS

Any study of the relations among the population parameters determining the dynamics of
host-parasite associations must ultimately take account of the evolutionary pressures on both
host and parasite. :

Parasites, by definition, reduce host survival and/or reproduction. Thus, by their nature,
parasites tend to select for host individuals with reduced susceptibility to the disease. For
this reason alone, we might expect the pathogenicity of the parasite to decrease through
evolutionary time. Many examples of this phenomenon can be culled from the literature, for
both vertebrate and invertebrate hosts. Among vertebrates, conspicuous examples are the blood-
groups conferring a degree of resistance to malaria in regions where the disease is endemic
(e.g. the sickle-cell phenomenon in human populations), and the history of myxomatosis
introduced into rabbit populations in Australia and Europe (Bradley 1977; Fenner & Ratcliffe
1965). For pathogens of invertebrates, Martignoni (1957) found that the pathogenicity of a
granulosis virus of the European larch budmoth, Eucosoma griseana, declined during an epidemic
outbreak of infection in Switzerland, with larvae collected after the epidemic being much more
tolerant to infection than those collected at the onset of the outbreak. Similar changes were
observed by Martignoni & Schmid (1961) in populations of the California oakworm, Phryganidia
california, infected with a nuclear-polyhedrosis virus. Several laboratory studies have demon-
strated reduced susceptibility to microparasitic infection among the survivors of experimental
infections (Harvey & Howell 1965; David & Gardiner 1960, 1965; Watanabe 1967).

The intensity of the selective forces exerted by a pathogen on its host are obviously related
to the prevalence of the infection within the population. In the cyclic epidemics of viral in-
fections in forest insects, the pathogen will exert strong selective pressure during the outbreaks
of disease, but will have little, if any, effect during the interregnum between epidemics. In
natural systems, therefore, selection for reduced susceptibility may often fluctuate. Moreover,
in many circumstances reduced susceptibility to infection is linked with deleterious traits, such
as reduced reproduction. Thus, over a period of years, the average susceptibility can depend
on a complex of evolutionary pressures, of which the pathogen is only one along with predation,
competition and climatic factors.

Turning from the host population, we note that selection also acts on the parasite itself.
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On the one hand, there can be pressures for high pathogenicity, in that « is often correlated
with the ability of the microparasite to reproduce rapidly within the invertebrate host
before the host mounts a cellular or humoral response (Maramorosch & Shope 1975). Fast
reproduction within the host before such responses become effective can be advantageous, even
though the consequence is eventually to destroy the parasite’s habitat by killing the host. On the
other hand, as is discussed in detail below, there are countervailing aspects of the population
dynamics of the parasite that tend to favour reduced pathogenicity.

To explore these evolutionary aspects of the parasite’s pathogenicity, we focus on the factors
determining the reproductive success of an individual parasite. Within an individual inverte-
brate host, populations of microparasites often arise by asexual replication processes (not
involving exchange of genetic material) originating from an infection created by a single
infective stage; hence the microparasitic populations are often genetically homogeneous within
a given host. In contrast, the production of transmission stages typically entails some sort of
sexual process, where genetic exchange occurs. The reproductive success of a specific genetic
strain of pathogen will therefore tend to depend on the number of hosts infected by the trans-
mission stages produced by the host with the primary infection. This quantity, which effectively
measures the Darwinian fitness’ of the parasite, is simply the basic reproductive rate R defined
and discussed in § 4.

In model .G, which incorporates a description of the infective stages, the basic reproductive
rate of the parasite in the case when it regulates the population growth of the host (essentially
when a > 7) is

R=a/(a-r). (81)

This result is established in appendix F. In these circumstances R is, of course, greater than
unity. We see that increasing pathogenicity (large «) will decrease the reproductive success
of the pathogen, and that maximum values of R are attained for « lying just above 7.

More generally, if the host population is controlled to an equilibrium level, H*, by factors
other than the pathogen, the basic reproductive rate of the parasite is, from equation (63),

R AvH*
T (e b+y) (p+vH*)

(82)

Selection can act to increase the value of R for the parasite by increasing the rate of production
of infective stages (increasing A), by increasing the longevity of the infective stages (decreasing
M), or, as before, by reducing the pathogenicity (decreasing a).

Equations (81) and (82) suggest that evolutionary pressures on the parasite act to reduce
its pathogenicity, independently of whether the parasite actually regulates its host population.
This tendency is also advantageous from the point of view of the host.

The fault in the above analysis is that it assumes that evolutionary changes in the various
ecological and epidemiological parameters can take place independently of each other. This
will rarely be true. In particular, as discussed immediately above, high rate of production of
infective stages, A, is likely to be associated with high pathogenicity, c.

As a crude caricature of this interrelation among the parameters, we may assume in model
G that the rate of production of infective stages is directly proportional to the pathogenicity:

Ax) = Aa. (83)

52 Vol. 291. B
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The general dynamical properties remain unchanged, except that Ao everywhere replaces A.
The basic reproductive rate of the parasite (equation (63) or (82)), now becomes

AavH*

k= (a+b+7y) (p+vH*) (84)

Here, selective pressures acting on the parasite to increase its.R will have the effect of increasing
the pathogenicity, «. Indeed, a certain minimum value of & is now required if the parasite is
to be able to persist (R > 1):

(b+7) (n+vHY)
@ > SHRA-T g (85)

24

80

(a)
()

121

40

1 iy shebeteetabaiiniadaie T —
R 0

o/year™!

Ficure 28. The relation between the basic reproductive rate, R, of the parasite and the rate of disease-induced
host mortality, a, is illustrated under various assumptions. (a) The relation, equation (81), derived from
the basic model A with A independent of a; here R is a dimensionless number, « is in units of year—?, and
r = 2.0 year~1. (b) The more general relation, equation (82), where the equilibrium host population H* is
not necessarily regulated by the pathogen; for illustrative purposes, we take vH* = 10, A = 200, u = 3,
b = 1and y = 0. (c) The relation, equation (84), arising when the rate of production of free-living infective
stages is dependent on parasite pathogenicity (explicitly, A = Aa (equation (83)); the parameter values
are as for (b) except that A = 10 (all units in year—?).

These points are illustrated in figure 28. It is also worth noting that when the value of A is
associated with « (equation (83)) and when the parasite regulates host population growth
(e > r), then the equilibrium density of the host population falls steadily with increasing
pathogenicity; see appendix F. This contrasts with the simpler, earlier models, where the
values of A and « are independent, and where the equilibrium host density attains its minimum
value for intermediate values of a (as shown in figure 6)..

More generally yet, we can recall the quantity A (equation (58)), which measures the total
number of infective stages produced over the lifespan of an infected host. Equation (82) for
the basic reproductive rate of the parasite then becomes

R = AvH*/(pu+vH*). (86)

This general expression makes it clear that the quantity of evolutionary significance is the
total number of infective stages A4 produced in an infected host; the quantity 4 may be made
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large by a rate of production of infective stages so large as to kill the host quickly (large A
and a), or by a relatively slow rate of production extending throughout a long-lived infection
(small A and o). This touches on a broader biological theme. Plants and animals exhibit a
spectrum of reproductive strategies, of which the simplistic extremes are the production of a
very large number of offspring, few of which survive (the so-called r strategy), and the pro-
duction of relatively few offspring, with significant parental investment enhancing their
probability of reaching maturity (the so-called K strategy). Parasites clearly tend to lie at the
r strategy end of this spectrum, since in general they produce enormous numbers of offspring
in the form of transmission stages, few of which survive to infect and reproduce in a new host.
Even at this extreme of the continuum, however, great variation can exist, with some pathogens
producing very large numbers of infective stages with low survival probabilities (large A or 4
offset by large x), while other species produce fewer offspring, whose chances of survival in
the external habitat are greater (lower A or A offset by lower x); see equation (86) and the
discussion in Bradley (1977).

The essential point is that natural selection will act concomitantly on both host and parasite,
with the selective pressures on the host often opposed to those on the parasite. Specifically,
selection on the host will tend to decrease a, while selection on the parasite will often tend to
increase a. The point where a dynamic balance is struck between forces acting on the host and
forces acting on the parasite will generally depend on the detailed natural history of the
association, in a way that lies outside the scope of our study (which is orientated to population
dynamics rather than evolutionary questions). In some instances, stable oscillations in the
abundance of hosts and parasites (as seen in §§ 11, 12, 13) may lead selective pressures to rise
and fall rhythmically, resulting in cyclic changes in the genetic constitution of the population
(see Pimentel 1968).

Because the generation times of most hosts are very much longer than those of their micro-
parasites, it is often concluded that selection acts more rapidly on the pathogen. However, as
we have discussed elsewhere (May & Anderson 1979), when parasites act severely to reduce
the survival or reproduction of their hosts, the pace of host evolution tends to be kept in step
with that of the parasites.

16. CONCLUSIONS

Our theoretical studies and survey of field and laboratory data indicate that the population
density of invertebrate species may often be regulated by microparasites, acting alone or in
conjunction with other regulatory influences such as parasitoids, predators or resource limi-
tations. This supports the earlier, but less analytical, suggestions of Lack (1954) and other
authors (reviewed in Southwood & Comins 1976; Anderson & May 19794; May & Anderson
1979).

Regulation

The criterion for a microparasite to be able to regulate its host population, in our various
mathematical models, is essentially that the net death rate of infected hosts exceed their net
birth rate. This criterion, which accords with biological intuition, may be met by the pathogen
either raising the death rate or depressing the birth rate of infected hosts, or by a combination
of both effects. The precise criteria that pertain in the specific biological situations detailed in
models A-G are summarized in table 9. The regulated state of the host population may be a

52-2
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stable constant value, or a stable cyclic oscillation. In particular, highly pathogenic micro-
parasites that produce large numbers of relatively long-lived infective stages are likely to give
rise to population cycles in host species with relatively low intrinsic growth rates. Such circum-
stances arise for baculovirus and microsporidian protozoan infections of many temperate forest
insects, where rough estimates of the parameters characterizing the host—parasite association
suggest cycles in host abundance and prevalence of infection with periods in the range 5-12
years; such cycles are indeed observed in many forest insects, and this may be the driving
mechanism.

TABLE 9. FACTORS THAT DETERMINE THE REGULATORY POTENTIAL OF A PARASITE

condition that must be
satisfied if parasite is to
regulate the growth of

factor its host population
high pathogenicity («) relative to the intrinsic growth rate (r) a>r
of the host population: model A
reduced reproduction (by factor 1—f) in infected hosts: model B a>a(l—f)—b
relatively short latent period of infection (1/v): model D o > r[1+(a+b+7y)/v]
pathogenicity an increasing function of host density (¢ = &H): model E > &
production of large numbers of infective stages: model G A > ala+b+y)/(e—r) >0
Prevalence

Broadly, the prevalence of infection within the host population is inversely related to the
pathogenicity, «. Thus the more pathogenic the parasitic infection, the more likely it is to
regulate its host population, yet, paradoxically, the lower will be its equilibrium prevalence.
It is, therefore, incorrect to conclude (as ecologists have often done) that a disease of low pre-
valence is unlikely to contribute to the regulation of host abundance. On the contrary, parasites
of low pathogenicity are likely to be very prevalent but to have little effect on the population
dynamics of their host, whereas persisting parasites of high pathogenicity that contribute
significantly to host population regulation will in general be characterized by low prevalence.
These remarks are subject to the reservation that excessively pathogenic parasites are unable
to persist within the host populations; i.e. they cause their own extinction (see model F and
figure 14). The inverse relation between pathogenicity or regulatory potential and prevalence
of the infection holds generally for microparasitic and macroparasitic infections of vertebrates
and invertebrates (Anderson & May 1979a; May & Anderson 1979); it is basically an example
of the inverse relation between standing crop and turnover rate that arises in many biological
systems (May 1977).

This observation argues for a reappraisal of some field data, where infectious diseases have
been dismissed as inconsequential to the dynamics of invertebrate populations, on the grounds
that the prevalence of infection is low.

Thresholds

The interaction between host and parasite is a nonlinear or density-dependent one. In
particular, the parasite can only be maintained within the host population if host density
exceeds a threshold value, H; (in this sense, parasitism is an ‘all-or-nothing’ phenomenon,
in contrast with simple models for predation or resource limitation). As shown in table 10,
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H is broadly dependent on pathogenicity a. Thus parasites of low pathogenicity typically have
relatively low threshold host densities and are likely to exhibit patterns of steady, endemic
prevalence. Conversely, highly pathogenic parasites typically are associated with high threshold
density, which the host population may only attain intermittently; highly pathogenic diseases
will often be characterized by patterns of epidemic outbreak. In this latter case, when host
abundance exceeds threshold levels periodically or episodically, the parasite may maintain
itself during the subthreshold intervals by infective stages that are free-living (outside the host),
or by vertical transmission, or by occult infection. In the intervals between outbreaks, other
factors, such as parasitoids, predators or food supplies, are likely to be the major determinants
of host mortality (Southwood & Comins 1976).

TABLE 10. FACTORS THAT ENHANCE THE ABILITY OF A PATHOGEN TO PERSIST IN A POPULATION
OF HOSTS THAT EITHER IS OF LOW DENSITY OR FLUCTUATES WIDELY IN ABUNDANCE

threshold host density, Hy,
factor for maintenance of disease

low pathogenicity (a); Hp = (a+b+7y)/8
low rate of natural host mortality (b);
low rate of host recovery from infection (y);
high transmission efficiency (f): model A

vertical transmission: model C Hy = (a+b+y—aq)/B
short latent or incubation period: model D Hy = [(b+0)/v] [(e+b+7)/F]
pathogenicity an increasing function of host density: model E Hy = (a+y)/(f—&)
other ‘carrying capacity’ constraints on host density corresponding to H, < K
densities in excess of Hy: model F ‘
production of large numbers of infective stages (1); long-lived H, = M
infective stages (y): model G VA= (a+b+7)]

In general, as can be seen from the expressions for Hy in table 10, vertical transmission is a
mechanism serving to reduce the effective value of the threshold host density, and thus facili-
tating the persistence of parasites in relatively low-density populations of hosts. To the contrary
of some earlier suggestions, we have, however, shown that it is not usually possible for a parasite
to be maintained by vertical transmission alone.

The threshold phenomenon, which arises in all our models independent of the nature of
the pathogen and the host (just as it does in conventional epidemiological models where host
populations are assumed constant), is sufficient to explain the observed correlation between
high density of invertebrate hosts and epidemic outbreak of disease. There is no need to invoke
(as some authors have done) any association between pathogenicity and stress on the host
population, induced by overcrowding, to explain the observed correlations.

Future research

A brief survey of, e.g., the Journal of Invertebrate Pathology shows that the rate at which new
species or types of viruses and bacteria have been discovered within invertebrate populations
has been accelerating in recent years. This i§ a consequence partly of new techniques (Gibbs
1973; Smith 1976; Tinsley 1979; Whitcomb & Tully 1979) and partly of increasing attention.
It suggests that ecologists and parasitologists have identified only a small fraction of the patho-
gens of invertebrates occurring in natural habitats. This observation, taken in conjunction
with our demonstration of the role that pathogens are capable of playing in the natural (or
artificial) regulation of invertebrate populations, strongly suggests that considerably more
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attention should be paid to the microparasitic organisms associated with natural populations
of invertebrates.

The first step in such an enterprise is clearly to identify the microparasitic organisms and
to record their prevalence within the host population at different times and places. For a
more quantitative understanding of the host-parasite dynamics, however, information about
rate processes (such as pathogenicity, «, and transmission efficiency, £ or ») is necessary.
Here laboratory studies comparing the dynamics of infected and non-infected populations of
hosts can be valuable (cf. figures 2, 3, 4).

Applications

Such theoretical and empirical studies can do more than help remedy the conspicuous
absence of discussion of host-parasite associations in contemporary ecology texts. With the
increasing incidence of invertebrates evolving resistance to chemical pesticides, pathogens are
more and more being used in efforts to control pest species. Insights into the dynamics of the
interaction between a pathogen and its invertebrate host can guide the design of laboratory
or field experiments, to estimate whether the pathogen is capable of regulating the target
population, and, if so, in what quantity it must be introduced to effect a specified level of
control or even local eradication (§ 14). The use of pathogens as control agents will, of course,
also tend to be beset by problems, arising from evolutionary changes in the genetic make-up
of host and pathogen populations. Although we have touched on evolutionary questions briefly
(§ 15), our attention has centred on population dynamics; the population genetics of host—
parasite associations deserves further attention.

We are indebted to many people, and particularly to M. P. Hassell and T. R. E. Southwood,
F.R.S., for helpful comments and advice. This work was supported in part by the N.S.F. under
grant DEB79-03290.

APPENDIX A
Glossary of symbols used in this paper

Population variables

H  total number of hosts

X number of susceptible hosts

Y  number of infectious hosts

x  susceptible fraction of host population, X/H

y  prevalence of infection, Y/H

H* equilibrium number of hosts

y*  equilibrium value of prevalence

M number of infected, but not yet infectious, (latent) hosts
W number of free-living infective stages of parasite
Hy  threshold host density (see table 10)

K carrying capacity for host population

Rate and other parameters

a  host birth rate (per individual)
b natural mortality rate of hosts
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r intrinsic growth rate of host population, a — b

a  disease-induced mortality rate

v  rate of host recovery from infection

f  transmission coefficient (in models where infection is transmitted directly from infecteds
to susceptibles)

R basic reproductive rate of the parasite

p  exponential growth rate of host population when the disease is maintained, but does not
regulate the population to a steady value

S fractional decrease in birth rate of infected hosts; birth rate of infected hosts is a(1 —f)

g  proportion of offspring of infected hosts acquiring infection by vertical transmission

v rate at which hosts pass from infected to infectious class; 1/v is length of incubation or
latent period

&  proportionality constant when pathogenicity is proportional to host density, « = &H.

parameter determining the severity of density-dependent effects on host mortality;
K=r/s

d  degree of disease-induced depression of host population below disease-free carrying
capacity value; d = 1 —H* /K

4#  mortality rate of free-living infective stages

A rate of production of infective stages, per infected host

A total number of infective stages produced per infected host, on average; 4 = A/(x+b+7)

v rate at which infective stages successfully infect hosts (transmission coefficient of free-living
infective stages)

A rate of introduction of infective stages (in a biological control program)

ArprENDIX B: MoDELS A, B, C

The dynamical properties of model A are outlined in § 5. This appendix presents the under-
lying mathematical analysis. The analysis is set out in some detail for this basic model A; for
the subsequent models B-G the mathematical essentials are similar, and the analysis is presented
more sketchily.

Model A
Given the identity H = X+, we can (as explained in § 5) choose to work with any two

of the three equations (12)—(14). Throughout these appendixes, we arbitrarily choose H (%)
and Y(¢) as the dynamical variables. For notational convenience, we define

I'=a+b+y. (B 1)

The quantity I' is the overall rate at which hosts are lost from the infected class, by natural
death, disease-induced mortality, or recovery. It is also useful to recall equation (10) for the
threshold host density, Hy, in this simplest, basic model:

Hy = T/p. (B2)

Model A now consists of the equations (13) and (14); rewritten here for convenience, these are
dY/dt = BY(H-Y - Hy), (B3)

dH/dt = rH—aY. (B 4)
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Alternatively, as explained in § 4, we can define the dimensionless variables H' = H/Hy
and Y’ = Y/Hy, to re-express equations (B 3) and (B 4) as

dy'/dt = TY'(H'—1-Y"), (B 5)
dH'/dt = tH' —aY'. (B 6)

This makes it clear that the dynamical behaviour of the system depends only on the rate para-
meters 7, « and the combination I'; £ or Hy enter only in setting the absolute magnitude of
the host population.

The analysis of equations (B 3) and (B 4), or (B 5) and (B 6), follows along routine lines
(see, for example, May 1974, ch. 2).

First, equilibrium solutions, H*, Y*, are found by solving the algebraic equations obtained
by setting dH/dt = 0 and dY/d¢ = 0:

H*—Y* = Hy, (B 7)
rH* —aY* = 0. (B 8)

Since H > Y, it is clear that no meaningful such solutions can be found for equation (B 8)
unless @ > 7 (equation (15)). If equation (15) is satisfied, equations (B 7) and (B 8) lead
directly to the equilibrium expressions (16)—(18) given in the main text.

Secondly, the stability of this equilibrium in response to small disturbances is determined
by the standard linearized analysis. We write H(t) = H* +H®), Y() = Y* +7 (t) in equa--
tions (B 3) and (B 4), and dlscard all terms of second order or higher in H and Y to arrive
at a pair of equations linear in A and ¥. The time dependence of the dynamlcal vamables in
these hnear first-order differential equations can then be expressed as A () = q exp (ot),
) ) = )4 exp (ot). Thus we arrive at the pair of linear algebraic equations

of = pY*(H-T1), (B 9)
oH = rB-a¥. (B 10)

The dynamical response of the system to small disturbances is now characterized by the
eigenvalues o. Using the result fY* = rI'/(a—r), we see that these are the solutions of the
quadratic equation

o2+ [r(a+y)/(e—r)]o+r = 0. (B 11)

According to the Routh-Hurwitz conditions, both eigenvalues will have negative real parts
(corresponding to a locally stable equilibrium point) if, and only if (iff), both coefficients in
this quadratic equation- are positive, which they obviously are for o > r. Thus iff & > 7
there is a locally stable equilibrium point; small disturbances will die away, either exponen-
tially or by damped oscillations. For a more detailed exposition of the techniques employed
here, see, for example, May (1974, ch. 2 and app. I, II).

The dynamical behaviour of the system in the case & > r is illustrated in figure 29 a, which
depicts the ‘phase plane’ of H(¢)-Y(¢) values (note that the shaded region Y > H is not
accessible). The isoclines along which dY/dt = 0 (Y = H—Hy) and dH/dt = 0 (Y = (r/a)H)
are as shown; these isoclines intersect iff @ > r. The arrows show the directions of the dynamical
trajectories in the various regions of this phase plane, and one typical trajectory is illustrated.
It can be shown that equations (B 3) and (B 4) satisfy the Kolmogorov conditions (see, for
example, May 1974, ch. 4), so that if a locally stable equilibrium point exists, it is globally
stable.
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|
3

H/Hy

Ficure 29. (a) This illustrates the H-Y phase plane for the basic model A. The total of number of hosts H and
the number of susceptible hosts ¥ are plotted in dimensionless form as H/Hy and Y/Hy; note that the
shaded region ¥ > H is inaccessible. The figure shows the isoclines along which d¥/d¢ = 0 and dH/dt = 0;
these isoclines intersect, giving a stable equilibrium point, if & > 7. The arrows show the general direction
in which dynamical trajectories must move in the various parts of the phase plane, and one typical trajectory
is illustrated. (b)) The H-Y phase plane is again depicted for host—parasite associations obeying the basic
model A. Here, in contrast to in (a), 7 > & and the isoclines along which d¥/d¢ = 0 and dH/d¢ = 0 cannot
intersect (indeed, dH/d¢ is riecessarily positive for all accessible values of H and Y). Host and parasite popu-
lations thus both asymptotically undergo unbounded exponential growth, as discussed in the text; a typical
trajectory is illustrated.

In short, either analytic or geometric methods can be used to show that the basic model A
possesses a globally stable equilibrium point iff @ > 7.

Conversely, if r > a there is no equilibrium point, and H(t) and Y(¢) undergo unbounded
exponential increase. This circumstance is illustrated in figure 295.

To study the asymptotic behaviour of model A in the case r > «, we first combine equations
(B 3) and (B 4) to get a differential equation for the prevalence of infection, y = Y/H:

dy/dt = (dY/dt—y dH/dt)/H, (B 12)
= y[BH(1~y) — (I'+r—ay)]. (B 13)
53 | Vol. 2g1. B
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Now suppose that H(¢) grows asymptotically at some exponential rate p:

H(t) - (constant) exp pt. (B 14)
Since y(¢) cannot continue to grow exponentially, equation (B 13) implies that, asymptotically,
y—>1. (B 15)

Thence, from equation (B 4),
p—>r—a. (B 16)

This is the result, equation (20), discussed in the main text. Returning to equation (B 3),
and remembering that X = H—Y, we obtain an expression for the asymptotically constant
number of susceptibles, X*, for when case r > a:

p = BX*—Hy). (B 17)

In conjunction with equation (B 16) for p, and equation (B 2) for Hy, this gives the result
quoted in the main text:
X* = (a+7)/p. (B 18)

It is clear from the above analysis (see, for example, equation (B 3)), or from the more
intuitively based discussion in the text, or from figure 29, that Y(¢) can increase from small
initial values only if H > Hj. This makes plain the role of the threshold host density. Similarly,
the dimensionless equation (B 5) shows that the infection can maintain itself only if the dimen-
sionless quantity H’ — 1 is positive, which leads to the definition of the basic reproductive rate
of the parasite,

R =H' = H/H, = pH/T. (B 19)

At equilibrium, the parasite’s basic reproductive rate (obtained by substituting from equation
(17) for H*) is
R* = af(a—7). (B 20)

These expressions for the threshold host density and the basic reproductive rate of the parasite
are discussed more fully in §§ 4, 5 and 15.

Model B

The effects of parasite-induced reduction of host reproduction are incorporated'in the set
of differential equations (21)<(23). These equations may be obtained directly from model A
by formally rewriting the parameters « and vy in the model as:

a—> o+ fa, (B 21)
Y —>v—fa. (B 22)

Note that I" = a+ b+ remains unaltered under this transformation. Hence, mutatis mutandis,
all the results for model B follow immediately from those for model A. In particular, the
expressions for R and Hy involve the combination of rate parameters I', and thus do not
change. But the criterion for the parasite to 'regulate its host population involves ¢, and hence
does change (equation (24)).
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Model C

Similarly, the effects of vertical transmission are incorporated in the set of differential equa-
tions (27)-(29), which are formally identical to model A, with the redefinition

Y —>v—aq. ' (B 23)

Note that this implies I" — I'—aq. Again, mutatis mutandis, all the results for model C follow
from those for model A. The condition for the parasite to regulate its host population does not
change (because @ does not change), but the expressions for R and Hy do change (because the
expression for I" changes.)

At the end of § 7 we asserted that a parasite cannot be maintained by vertical transmission
alone. To prove this, we put # = 0 (no horizontal transmission) in the appropriately altered
(that is, ¥ - ¥ —agq) equation (B 13) for the dynamics of the prevalence of infection:

dy/dt = —y(a+a+y—aq—ay). (B 24)
Rearranging this equation, we have

dy/dt = —y[a(1-y)+a(l—q)+7]. (B 25)

The expression inside the square brackets is necessarily positive (except in the extreme circum-
stance of zero pathogenicity, perfect vertical transmission and no recovery: & = 0, ¢ = 1,
v = 0). Therefore dy/dt < 0, and the prevalence must decline toward zero.

AppENnDIX C: MODEL D

If a class of latent (infected but not infectious) individuals M is added to model A, we have
model D. Expressed in terms of the dynamical variables H(¢), M(¢) and Y(¢), these equations
(33)—(35) are

dH/dt = rH-aY, (C1)
dM/dt = BY(H-M-Y)— (b+v) M, (C2)
dY/dt = vM—TY. (G3)

The number of infectious individuals will increase from an initially small value provided that
BHY > (b+v) M and vM > I'Y; that is, if

BoH/T(v+5) > 1. (C 4)

This underlies the definition of R given in equation (36), and leads to equation (37) for the
threshold host density, Hy.

Putting all time derivatives equal to zero in equations (G 1)—(C 3), and solving the resulting
set of three simultaneous algebraic equations, we get the equilibrium expressions

P _TG+)  a

H* = B v [a—r(1+I/v)] (C5)
M* = (rI'/av) H*, (C6)
Y* = (r/a) H*. (C7)

53-2
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The criterion o > r(1+I'/v) of equation (38) follows immediately if a biologically sensible
equilibrium solution, H* > 0, is to be possible.

The stability of this equilibrium point is studied by a straightforward extension of the
linearized analysis outlined in appendix B for model A. Writing H(¢) = H* +H (&) M(t) =
M* 4+ M(1), Y(t) = Y*+ ¥ (¢), expanding in Taylor series and extracting the time-dependence
of the dynamical variables in the consequent set of three linear differential equations as
exp (ot), we arrive at

ol = tH-a?, (G 8)
oM = (BY*)H + B(H* — M* —27*) 7— (BY* +b+0) M, (G9)
of = —I'Y +0M. ~ (C 10)
The stability-determining eigenvalues o thus obey the cubic equation
0%+ A40?+Bo+C = 0. (C11)
The coefficients 4, B, C are defined as
A=T+b+v—r+[rT'/(a—F)][(b+v)/v], (C12)
B = [rI'/(a—)][(6+v) /o] (T +v—7)—r(I'+b+v), (C 13)
C = rI'(b+v). (G 14)
Here
f=r(1+I)v). (C 15)

The condition for an equilibrium point to be possible (equation (38)) is thus a > 7. The
Routh-Hurwitz criteria for all three roots to have negative real parts (corresponding to a
locally stable equilibrium) are 4 > 0, B > 0,C > 0 and

AB > C. (C 16)

For a more full exposition, see May (1974, app. II). It is relatively easy to show that 4, B and
C are indeed positive quantities, provided that a > f. The remaining stability condition,
AB > C, is, however, not always fulfilled. Without becoming enmeshed in too much detail,
we now indicate some limiting cases.

First, if the latent period is short compared with all other relevant time scales (i.e. v
greater than all other relevant rate parameters), we have the limiting expressions 4 — v,
B —vr (a+7y)/(e—7), C - vl In this limit, AB > C, and the equilibrium point is stable (as
we expect, because in the formal limit as ¥ — co0 we recover model A).

Secondly, if the pathogenicity is very high, so that the lifespan of infectious individuals is
shorter than any other relevant time scale in the system (i.e. « significantly greater than all
other rate parameters), we have 4 - a, B > arb/v, C - ar(b+v). Again AB > C in this limit,
and again the equilibrium point is stable. This result is less intuitively obvious than the pre-
ceding limit of a very short latent period.

Thirdly, suppose that the latent period is very long (v very small), so that# = r(1+ I'/v) in-
creases toward the value a (remember that for # > « there is no disease-regulated equilibrium;
see equation (38)). As a—# becomes small, its reciprocal becomes large, and hence so do 4
and B. That is, in the limit of a long latent period (butstille — 7 (1+I'/v)), AB > C, and there
is a stable point. Again, the result is not intuitively obvious.
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Fourthly, and finally, consider the case when the host population’s vital rates a, b and 7
(r = a—b) are all much smaller than both the rate parameters « and . Further, for simplicity,
let the recovery rate be zéro: y = 0. In this limit, 4 - (¢ +v), B — ra[(x+v)*—av]/av, and
C - raw. The stability criterion, equation (C 16), now becomes

a2y?
a > CEDICED T (G 17)

We see that this condition may well be satisfied if either one of & or v is much larger than the
other (as discussed in the first and second cases above). But if & and v are of comparable
magnitude and both significantly larger than the individual host birth rate, a, equation (C 17)
will not be fulfilled; in this event, it appears that the system will exhibit stable limit cycle

behaviour.
In most of the discussion in the main text, the latent period is assumed to be short (very

large v), and these complications are effectively ignored.

AppeEnDIX D: MmoDpEL E

Model E, which allows for the effects of stress-dependent pathogenicity, is a straightforward
extension of the basic model A. The expressions for the parasite’s basic reproductive rate and
for the threshold host density need no discussion.

The equilibrium values of H* and Y* are found by putting dH/dt = 0 and dY/d¢ = 0
in equations (43) and (42), respectively:

B(H* —Y*) — (b+7y) —&H* = 0, (D 1)
r—&Y* = 0. (D 2)

These equations lead to equation (47) for H*, provided that # > &. As outlined in appendix
B, the local stability of this equilibrium point is characterized by the eigenvalues o, which
obey the linearized equations

of = Y*[(8-&)H- 7], (D 3)
oH = —GH*Y. (D 4)

It follows that the eigenvalues are the solutions of the quadratic equation
0%+ (BY*) 0 +8(— 8) HAY* = 0. (D 5)

Both coefficients in this quadratic equation are positive if # > &, and hence if the equilibrium
point exists it is locally stable.

ArrENDIX E: MoDEL F

The introduction of density dependent constraints, additional to those associated with the
host—parasite interaction itself, does not affect the basic analysis set out in appendix B. It
does, however, substantially add to the algebraic complications in carrying out the analysis.

Expressed in terms of the dynamical variables H(t) and Y(t), equations (50) and (51) for

model F become:
dY/dt = Y[(f—s)H-BY-T1], (E1)

dH/dt = rH—sH?—aY. (E 2)
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Here r = a—b,; I' is defined as in equation (B 1),
I'=a+by+7v; (E3)

and Hy is as in equation (55), namely Hy = I'/(#—s). In the absence of the disease, the host
population has a stable equilibrium at the carrying capacity, K = r/s (see equation (52)).

The isoclines for this system are illustrated in figure 12 (albeit in the X~Y phase plane).
The equilibrium values H* and Y* are, as ever, obtained by setting d¥/d¢ = 0 and dH/dt = 0,
and solving the resulting pair of simultaneous algebraic equations. The outcome is a quadratic
equation for H*, which has the positive solution

H*[K = }{1 - L+ [(1- )+ 4474, (E4)
Here { and £ have been defined for notational convenience:

s

¢=5(1-5) (=9

r{s
£ = Hy/K = 7 (75): (E 6)
The quantity £ is the ratio between the threshold host density for maintenance of the parasite,
and the disease-free carrying capacity. Notice also the requirement that # > s, which is
discussed following equation (53) in the main text. The expression for the equilibrium popu-
lation of infected hosts is

Y*/K = }(1—s/B){1 - {—2£+[(1- )2 +4LE]H (ET7)

For the disease to be maintained at equilibrium, we obviously require that Y* > 0, whence
(for # > s, equation (54)) we require

1—¢—2£+[(1-8)2+4LE)E > 0. (E 8)
Some routine algebraic manipulation shows the inequality (E 8) to be fulfilled iff
£< 1. ' (E 9)

This is equation (56) of the main text; there is an equilibrium solution in which the parasite
is maintained iff Hy; < K. More explicitly, it can be shown from equations (E 4) and
(E7) that if Hy < K(§ < 1), then Y* > 0 and K > H* > H;. On the other hand, if
Hy > K (¢ > 1), then Y* <0 and K < Hy.

It remains to prove this equilibrium point is locally stable. Following the standard procedure,
we linearize equations (E 1) and (E 2) around the equilibrium point H*, Y*, to obtain the pair
of equations

of = (p-9H-pT), (E 10)
ol = r(1—2H*/K)H—~a¥. (E 11)
The eigenvalues o are thus the solutions of a quadratic equation
o2+ 40 +B =0, (E 12)
with the definitions
A =r[(B/s—1)(H*/K-§)+2H* /K -1], (E 13)
B = rfY*[2H* /K —1+]. (E 14)
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According to the standard Routh-Hurwitz conditions, the equilibrium point is locally stable
iff A > 0 and B > 0. From equation (E 14) in conjunction with equation (E 4), it is clear
that B > 0. The proof that A > 0 is trickier. First notice the definitions in equations (E 3),
(E 5) and (E 6) imply that

Bls—1 = TJré > L/E. (E 15)

Thus in equation (E 13) we have
EAJr > {(H*/K—£)+£(2H*/K—1). (E 16)

Substituting from equation (E 4) for H* /K, we can now show that the expression on the right
side of equation (E 16) is positive when £ < 1, whence 4 > 0 for £ < 1. This completes
the proof that the disease-regulated equilibrium point (which only exists if £ < 1) is stable.
The phase-plane portrait of figure 12 suggests that local and global stability go together here.

Finally, the degree to which the disease depresses the host population below its disease-free
level K (see equation (57)) is

d = H{1+{-[(1-§)*+4L88 (E 17)

As expected (and as illustrated in figure 14), d > 0 both when a - 0 (i.e. {—0) and when
Hy - K (i.e. when £ > 1).

AprpreEnDIX F: MoDEL G

The system with free-living infective stages, model G, is defined by the set of differential
equations (60)—(62). Following the scheme outlined in § 12 (preceding the set of approximate
equations (74)—(76)), we introduce the dimensionless variables H' = H/Hy, Y’ = Y/Hy and
W' = uW/AH, (with Hy defined by equation (B 2) in conjunction with equation (67) for
B;ie. Hy = pT'[vA):

dY'/dt = TW'(H'-Y")-TY’, (F 1)
dH'/dt = rH' —aY’, (F 2)
AW’ jdt = pY' —p[1+ (H'[A)]W". (F 3)

Here I'is defined, as before, by equation (B 1), and A is the total number of free-living infective
stages produced in the lifespan of the average infected host (equation (58)). As discussed in
§ 11, it will usually be an excellent approximation to put 4 — oo, whereupon the approximate
set of (dimensionless) equations (74)—(76) is obtained.

As always, the equilibrium solution H*, Y*, W* is found by putting all time derivatives equal
to zero, and solving the ensuing set of algebraic equations. The result, expressed in terms of
the absolute population variables H* and W*, is

r

" = pa=vja=17ay *4)
y* =r/a, (F 5)
W* = rTfv(a—7). . (Fe)

Notice that we require the denominator in equation (F 4) to be positive. Thus a disease-
regulated equilibrium is only possible if

4> af(a-1r) > 0. (F7)
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Substituting from the definition 4 = A/I" (equation (58)) we obtain the condition, equation
(69), discussed in the main text. In the usual limit 4 - oo, equation (F 4) reduces to the
approximate result given in the main text, equation (72), and the condition for the parasite
to be capable of regulating its host population (equation (F 7) or (69)) becomes simply
o > r (equation (70)).

For the stability analysis, we expand around the equilibrium point, H'(f) = H*+H (t),
Yt) =Y * 47 ), w'@) = W’*+W(t), and discard terms of second or higher order in
the quantities 4, 7, w. Extracting the time-dependence of these dynamical variables in the
subsequent linear differential equations, in the factor exp (o), we arrive via the canonical
route at the set of equations

of = TWH*H-T(W™* -0\ T+ T(H™* - Y*) W (F 8)
oH = rH—a¥, (F9)
oW = —(uW* WA +uF —p(1+ H*JA)W. (F 10)

This set of simultaneous linear equations gives a cubic equation for the eigenvalues o:
0% +40%+Bo+C = 0. (F 11)
Here the coefficients 4, B, C are defined as

A =pd+al'/(a—r)—r1, (F 12)

B = prA(l'-a+r)/(e—r), (F 13)

C = rul, (F 14)
and the quantity 4 is

4 = (a—r1)/(a—r—0/A). (F 15)

The Routh-Hurwitz criteria for all three roots of this cubic to have negative real parts
(corresponding to the equilibrium point being locally stable) are, as before, 4 > 0, B > 0,
C > 0, and 4B > C. As long as the basic condition of equation (F 7) is satisfied, 4, B and C
are all positive; the remaining condition,

AB > C, (F 16)

may, or may not, be satisfied, depending on the values of the rate parameters. If the values of
4, B and C are such that equation (F 16) is satisfied, then there is a stable equilibrium point
with the host population having the value H* of equation (F 4) and the population of free-
living infective stages having the value W* of equation (F 6). Conversely, if equation (F 16)
is not satisfied (but equation (F 7) is), numerical investigations show that the system settles
to some unique stable limit cycle. Results from numerical studies of the period of these stable
limit cycles are shown in figure 20. In the limit 4 — oo, we have 4 — 1; substitution of the
resulting relatively simple expressions for 4, B and C into equation (F 16) leads to equation
(71), which describes this approximate boundary between stable point and stable limit cycle
behaviour (when the parasite is capable of regulating its host population).

The types of parameter combinations likely to produce stable limit cycles are discussed in
the main text, in §§ 11 and 12 and in figures 18 and 19. In particular, in the limit when
> p and a >r (and A4 - ), we have 4 ~ a, B = ru(a+7y)/a, and C ~ rue. Under
these circumstances, C > 4B, and the roots of the cubic equation (F 11) are approximately
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o0~ —a and o & +i(ur)? (with correction terms of relative order (ur)¥/a). That is, the
system oscillates in a stable limit cycle, the approximate period of which is

T ~ 2m(pr)-%. (F 17)

The numerical studies summarized in figure 20 show that this approximation tends to under-
estimate the period of the cycles, unless a is much greater than x and r.

If the condition (F 7) is not satisfied (which for 4 - oo means when r > «), the disease
cannot regulate the host population to a steady value or in a stable limit cycle. In this event,
H(t) will undergo unbounded exponential growth, at some growth rate p;

H'(t) — (constant) exp (pt). (F 18)

The analysis of this case proceeds along the line laid down more fully in appendix B for model
A. For equations (F 1) and (F 2) to be satisfied, Y’(¢) must increase at the same rate as H'(t):

Y'() > yH' (1), (F 19)

with the prevalence y tending asymptotically to a constant value. For equation (F 3) to be
satisfied, it can be shown that IW’(¢) takes the asymptotic form

W(t) - Ay(1— AJH' +...). (F 20)

Here the correction terms are of order exp (—2pt). The asymptotically constant quantities
p and y are now found by substituting the formulae (F 18)—(F 20) into equations (F 1) and
(F 2), to get

py = Ty[A(1—y) 1], (F 21)
p=r—oay. (F 22)

Thus the prevalence settles to the asymptotic value

I'a—-r-r
I'l—a °

y— (F 23)
Equation (F 23) in conjunction with equation (F 22) gives the growth rate p of the host
population at large times. Notice that the expression (F 23) for y is necessarily less than unity,
but is positive only if

I'a—-rnI >7. (F 24)

Recalling the definition I'/41 = A, we arrive at equation (73) in the main text as the condition
for the disease to be maintained in the ‘run-away’ host population. In the usual limit 4 — oo,
equation (F 24) or (73) is automatically satisfied, and y - 1 and p - r—a (as in model A)
after sufficient time has elapsed.

Conversely, if equation (F 24) or (73) is not fulfilled, asymptotically y — 0 and the disease
is not maintained in the host population, which grows exponentially at the disease-free popu-
lation growth rate, 7.

The above analysis lays bare the four qualitatively distinct regimes of dynamical behaviour
catalogued and discussed in § 11.

It remains to establish the results for R and H; that are discussed in § 15. Using the original,

54 Vol. 291. B
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unscaled form of equations (60)—(62), we see that a small initial population of infected host
individuals will tend to increase provided that vHW > I'Y and AY > (pu+vH) W, that is, if

AvH

T—(—/Zl-v_H) > 1. (F 25)

In the usual way (discussed more fully in § 4 and appendix B), we identify the left side of
equation (F 25) with the basic reproductive rate, R, of the parasite. This gives the general
equations (63) and (82). Substituting from equation (F 4) for H*, the equilibrium value of
R is seen to be simply

R* = a(a—r), (F 26)

as stated in equation (81); this result could alternatively be obtained more directly by the
general biological argument outlined in § 4. The above results do not require A to be inde-
pendent of «, and therefore remain valid if A is some arbitrary function of a. Hence we obtain
equation (84) for R when A = Aa, and equation (86) for R in general.

As explained in the main text, the threshold host density Hy is that density for which the
disease only just maintains itself, R = 1. From equation (63) or (F 25), or directly from the
basic equations (60) and (62), we get

wl’
vA(1—1/4)
This is equation (66) of the main text. Under the usual approximation A - co, and with
equation (67) defining # = vA/u, we recover the approximate result H = I'/f of equation
(68). Again, the formulae for Ay all remain valid in the event that A is some arbitrary function
of a.

Hy = (F 27)

Model G combined with model B

Figure 19 shows the various domains of dynamical behaviour (stable point, stable limit
cycle, exponential growth with or without the parasite maintained) in u—r parameter space,
in the case where the parasite diminishes the reproduction of infected hosts. The underlying
equations here are a combination of models G and B. That is, they are equations (60)—(62) in
conjunction with the formal replacements

a - a+fa, (F 28)
Y=y —fa, (F 29)

and thus I" — I (see the discussion of model B in appendix B). All the formulae and discussion
in the present appendix, and in § 11, now apply, subject only to the reinterpretation of the
parameters « and vy indicated by equations (F 28) and (F 29). In particular, the quantities
4, B, C and 4 of equations (F 12)—(F 15), which are involved in determining the boundary
between stable point and stable limit cycle behaviour when the disease does regulate its host
population, are now:

A" = pA' +TI'(e+fa)/(a+fa—1) -7, (F 30)
B = wprA'(I'-a—fa+r)/(a+fa—r), (F 31)
C' = rul, (F 32)
A" = (a+fa—r)/[a+fa—r—(a—fa)A]. (F 33)
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In the usual limit 4 — oo, 4’ - 1 as before, and the condition A’B’ > €’ for stable point
(rather than stable limit cycle) behaviour becomes

[#+(a+fa) D' —r](D'—=1)—T > 0. (F 34)
Here D’ is defined for notational convenience as
D" =T/(a+fa—r). (F 35)

It is interesting to compare equation (F 34) with the corresponding stability criterion,
equation (71), in the absence of any decrease in the reproductive capabilities of infected hosts.
As fincreases toward unity, both D’ and (a+fa) D’ are smaller than the corresponding factors
D and aD in equation (71). Thus, other things being equal, equation (F 34) for finite f is
harder to satisfy than is equation (71) for f = 0, and stable limit cycle behaviour is more
easily exhibited by host-parasite systems in which the parasite diminishes host reproduction.
These trends are illustrated in figure 19.

AprPENDIX G

When free-living infective stages of the parasite are artificially introduced at a rate 4, as
discussed in § 14, the model G system obeys equations (60), (61) and (72), namely

dY/dt = vW(H-Y)-TY, (G1)
dH/dt = rH—-aY, (G 2)
dW/dt = A+AY - (u+vH)W. (G 3)

Possible equilibrium points are, as ever, obtained by putting all time derivatives equal to
zero and solving the ensuing set of three simultaneous algebraic equations. Two biologically
meaningful solutions are possible.

First, there is a solution with

H* = Y* = o, (G 4)

W* = A/u. \ (G 5)

This corresponds to the parasite being introduced at a rate sufficiently high to extinguish the
host population; the population of free-living infective stages of the parasite is maintained by
a balance between immigration (at the net rate 4) and death (at the individual rate p).

The stability of this equilibrium is studied in the standard way by writing H(¢) = H* +H (),
Y(t) = Y*+ )4 (8), W(t) = W*+ w (t), and expanding in Taylor series about the equilibrium
point. In the resulting set of linear, first-order differential equations the time-dependence of
the dynamical variables may be extracted as a factor exp (ot), to get

of = —(wd/u+T) P+ wa/u) 8, (G 6)
oH = rﬁ—aﬁ (G7)
oW = — (A p) B+ 1T =4, (G 8)
The eigenvalues o thus obey the cubic equation
(0+u) (02 +Bo+C) = 0, (G9)
54-2
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with the definitions
B =vA/u+T—-r, (G 10)
C= (a—r)vA/u—rI. (G 11)

The equilibrium is thus locally stable iff both B and C are positive. The condition C > 0 is
fulfilled iff

a > (G 12)
and

A4 > prl'fv(a—r). (G 13)

If these conditions are satisfied, it automatically follows that B > 0. As discussed in the main
text, equation (G 12) is the familiar requirement that the parasite be sufficiently pathogenic
to be capable of regulating the host population, and equation (G 13) then gives the threshold
rate of introduction of free-living infective stages needed to eradicate the host population
(equation (79)). Looking back at equations (F 4) and (F 5) for H* and Y* when 4 = 0,
and taking the usual limit A4 — oo, we see that equation (G 13) can be rewritten as

4 > AYE. (G 14)
Here Y§ is the equilibrium population of infected hosts in the absence of any artificial intro-

duction of free-living infective stages, 4 = 0; this is equation (80) of the main text.
Secondly, equations (G 1)-(G 3) have another equilibrium solution:

afurl'/v—A(a—r1)]

B = = e —al] (G 15)
Y* = (r/a) H*, (G 16)
W* = rI'fv(a—T). (G 17)

For a biologically meaningful solution H* > 0, we require both that equation (69) be satisfied
(this being the familiar condition of § 11, expressing the criterion for the parasite to be capable
of regulating its host population), and that

urlfv(a—r) > A. (G 18)

Equation (G 18) is the opposite of equation (G 13), and requires the introduction rate 4 not
to exceed the threshold value of equation (79) or (G 13) if the host population is to persist
at a finite value of H*.

The stability analysis for this second equilibrium, equations (G 15)—(G 17), proceeds along
the lines laid down above and in appendix F. Provided that equations (G 18) and (69) are
satisfied, there can be a stable point or a stable limit cycle (with the two regimes divided by
a criterion that is the appropriate generalization of equation (71)); we omit the details.

In brief, the host population is extinguished (i.e. the equilibrium solution of equations (G 4)
and (G 5) is stable) if 4 > 4. The host population persists, albeit at a level below that for
A = 0 (i.e. the equilibrium solution of equations (G 15)—(G 17) is stable, or is the centre of
a stable limit cycle) if 4 < A.. The critical introduction rate 4. is defined by equations (79),
(G 13) or by equations (80), (G 14).
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